Jud7
Answered

Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour, j’ai des exercices de maths pour demain et je n’y arrive vraiment pas je suis totalement bloquer pouvais vous m’aidez s’il vous plaît ? C’est l’exercice 3 et l’exercice 8 Merci d’avance

Bonjour Jai Des Exercices De Maths Pour Demain Et Je Ny Arrive Vraiment Pas Je Suis Totalement Bloquer Pouvais Vous Maidez Sil Vous Plaît Cest Lexercice 3 Et Le class=
Bonjour Jai Des Exercices De Maths Pour Demain Et Je Ny Arrive Vraiment Pas Je Suis Totalement Bloquer Pouvais Vous Maidez Sil Vous Plaît Cest Lexercice 3 Et Le class=

Sagot :

Réponse : Bonjour,

Exercice 3

L'équation de la tangente à f, au point d'abscisse [tex]a \in \mathbb{R}[/tex], est:

[tex]y=f'(a)(x-a)+f(a)\\y=(2a-6)(x-a)+a^{2}-6a+10\\y=(2a-6)x-2a^{2}+6a+a^{2}-6a+10\\y=(2a-6)x-a^{2}+10[/tex]

Donc la tangente à f au point d'abscisse [tex]a[/tex], passe par le point A(2; -1), si et seulement si:

[tex](2a-6) \times 2-a^{2}+10=-1\\4a-12-a^{2}+10=-1\\-a^{2}+4a-1=0[/tex]  

On résout cette dernière équation du second degré:

[tex]\displaystyle \Delta=4^{2}-4 \times (-1) \times (-1)=16-4=12\\a_{1}=\frac{-4-\sqrt{12}}{-2}=\frac{4+\sqrt{12}}{2}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3}\\a_{2}=\frac{-4+\sqrt{12}}{-2}=\frac{4-\sqrt{12}}{2}=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}[/tex]  

Donc aux point d'abscisses [tex]a_{1}=2+\sqrt{3}[/tex], et [tex]a_{2}=2-\sqrt{3}[/tex], la tangente à f passe par le point A(2;-1).

Il ne reste plus qu'à calculer l'ordonnée de ces deux points.

i) L'ordonnée du point de C, d'abscisse [tex]a_{1}=2+\sqrt{3}[/tex], est:

[tex]y_{a_{1}}=(2+\sqrt{3})^{2}-6(2+\sqrt{3})+10=4+4\sqrt{3}+3-12-6\sqrt{3}+10\\y_{a_{1}}=5-2\sqrt{3}[/tex]

ii) L'ordonnée du point de C, d'abscisse [tex]a_{2}=2-\sqrt{3}[/tex], est:

[tex]y_{a_{2}}=(2-\sqrt{3})^{2}-6(2-\sqrt{3})+10=4-4\sqrt{3}+3-12+6\sqrt{3}+10\\y_{a_{2}}=5+2\sqrt{3}[/tex]  

Donc l'ensemble des points de C, dont la tangente passe par le point A sont les points de coordonnées [tex](2+\sqrt{3}; 5-2\sqrt{3})[/tex], et [tex](2-\sqrt{3}; 5+2\sqrt{3})[/tex].

Exercice 8

La tangente à C au point d'abscisse 1 est parallèle à l'axe des abscisses, donc f'(1)=0.

Calculons la dérivé de f:

[tex]\displaystyle f'(x)=a+\frac{b}{2\sqrt{x}}[/tex]  

Comme f'(1)=0, alors:

[tex]\displaystyle f'(1)=a+\frac{b}{2}=0\\ a=-\frac{1}{2}b[/tex]  

Donc:

[tex]\displaystyle f(x)=-\frac{1}{2}bx+b\sqrt{x}=\sqrt{x}\left(-\frac{b}{2}\sqrt{x}+b\right)[/tex]

On résout l'équation f(x)=0:

[tex]\displaystyle \sqrt{x}\left(-\frac{b}{2}\sqrt{x}+b \right)=0\\ \sqrt{x}=0 \Rightarrow x=0\\ -\frac{b}{2}\sqrt{x}+b=0\\ -\frac{b}{2}\sqrt{x}=-b\\\sqrt{x}=b \times \frac{2}{b}\\ \sqrt{x}=2\\x=2^{2}=4[/tex]  

Donc les solutions de l'équation f(x)=0, sont 0 et 4.