Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Bonjour,
3a) On a D[tex]_{1}[/tex] : y = -3
D[tex]_{2}[/tex] : x - y = 5 ⇔ x = 5 + y ⇔ y = x - 5
D[tex]_{3}[/tex] : x + 2y = -4 ⇔ 2y = -x - 4 ⇔ y = - 1/2x - 2
Voir la représentation graphique de D[tex]_{1}[/tex] ; D[tex]_{2}[/tex] et D[tex]_{3}[/tex] en pièce jointe
3b) Graphiquement on remarque que les droites semblent concourantes, démontrons le :
Il existe un point A(x ; y) tel que :
[tex]D_{1} =D_{2} =D_{3}[/tex]
On va d'abord chercher le point d'intersection entre D[tex]_{1}[/tex] et D[tex]_{2}[/tex] on a ainsi :
x - 5 = -3 ⇔ x = -3 + 5 ⇔ x = 2
or y = x - 5 ⇔ y = 2 - 5 ⇔ y = -3
Le point d'intersection entre D[tex]_{1}[/tex] et D[tex]_{2}[/tex] est donc A(2 ; -3)
On va faire de même pour le point d'intersection entre D[tex]_{1}[/tex] et D[tex]_{3}[/tex] on devrait retrouver le point A(2 ; -3)
-1/2x - 2 = -3 ⇔ -1/2x = -3 + 2 ⇔ -1/2x = -1 ⇔ x = -1 × (-2) ⇔ x = 2
y = - 1/2x - 2 ⇔y = -2/2 - 2 ⇔ y = -1 - 2 ⇔ y = -3
Le point d'intersection est donc toujours A(2 ; -3)
Enfin faisons la même chose pour déterminer le point d'intersection entre D[tex]_{2}[/tex] et D[tex]_{3}[/tex] :
x - 5 = -1/2x - 2 ⇔ x + 1/2x = -2 + 5 ⇔ 3/2x = 3 ⇔ x = 3 × 2 ÷ 3 ⇔ x = 2
y = x - 5 ⇔ y = 2 - 5 ⇔ y = -3
Le point d'intersection est donc toujours A(2 ; -3)
Conclusion : D[tex]_{1}[/tex] ; D[tex]_{2}[/tex] et D[tex]_{3}[/tex] sont concourantes au point A(2 ; -3)
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.