Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour,
Pourriez vous m'aidé pour ces trois inéquations s'il vous plait ? x^2+4 / x^2-6x+8[tex]\leq[/tex]1
(x^2-1)(-3x^2+7x-2)>0
1/x [tex]\leq[/tex] 1/(x+1) + 1/(2-x)

Cela fait quelque fois que je les recommence mais sans succès, les fractions et les racines carrés me font défaut dans ce type d'exercice.
Je vous en remercie, Bonne journée.


Sagot :

Réponse :

résoudre les inéquations suivantes

(x² + 4)/(x² - 6 x + 8) ≤ 1    tout d'abord il faut que x² - 6 x + 8 ≠ 0

⇔ ( x - 2)(x - 4) ≠ 0  ⇔ x - 2 ≠ 0 ⇔ x ≠ 2  et  x ≠ 4  

(x² + 4)/(x² - 6 x + 8) ≤ 1  ⇔ (x² + 4)/(x² - 6 x + 8) - 1  ≤ 0

⇔ (x² + 4 - x² + 6 x - 8)/(x² - 6 x + 8) ≤ 0

⇔ (6 x - 4)/(x² - 6 x + 8) ≤ 0

    x        - ∞                2/3               2                 4                + ∞      

6 x - 4               -          0        +                +                  +

x - 2                   -                    -       ||        +                  +  

x - 4                   -                    -                 -          ||       +  

  Q                     -          0        +      ||        -           ||       +

l'ensemble des solutions de l'inéquation est :  S = ]- ∞ ; 2/3]U]2 ; 4[

(x² - 1)(- 3 x² + 7 x - 2) > 0

Δ = 49 - 24 = 25  ⇒ √25 = 5

x1 = - 7 + 5)/- 6 = 2/6 = 1/3

x2 = - 7 - 5)/- 6 = 12/6 = 2

         x              - ∞             - 1           1/3             1                2              + ∞

       x²-1                        +      0    -               -      0       +               +

- 3 x²+7 x - 2                  -            -       0      +               +       0     -      

        P                           -       0    +      0      -      0       +        0     -

l'ensemble des solutions est  S = ]- 1 ; 1/3[U]1 ; 2[    

Explications étape par étape