Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour,
Pourriez vous m'aidé pour ces trois inéquations s'il vous plait ? x^2+4 / x^2-6x+8[tex]\leq[/tex]1
(x^2-1)(-3x^2+7x-2)>0
1/x [tex]\leq[/tex] 1/(x+1) + 1/(2-x)

Cela fait quelque fois que je les recommence mais sans succès, les fractions et les racines carrés me font défaut dans ce type d'exercice.
Je vous en remercie, Bonne journée.


Sagot :

Réponse :

résoudre les inéquations suivantes

(x² + 4)/(x² - 6 x + 8) ≤ 1    tout d'abord il faut que x² - 6 x + 8 ≠ 0

⇔ ( x - 2)(x - 4) ≠ 0  ⇔ x - 2 ≠ 0 ⇔ x ≠ 2  et  x ≠ 4  

(x² + 4)/(x² - 6 x + 8) ≤ 1  ⇔ (x² + 4)/(x² - 6 x + 8) - 1  ≤ 0

⇔ (x² + 4 - x² + 6 x - 8)/(x² - 6 x + 8) ≤ 0

⇔ (6 x - 4)/(x² - 6 x + 8) ≤ 0

    x        - ∞                2/3               2                 4                + ∞      

6 x - 4               -          0        +                +                  +

x - 2                   -                    -       ||        +                  +  

x - 4                   -                    -                 -          ||       +  

  Q                     -          0        +      ||        -           ||       +

l'ensemble des solutions de l'inéquation est :  S = ]- ∞ ; 2/3]U]2 ; 4[

(x² - 1)(- 3 x² + 7 x - 2) > 0

Δ = 49 - 24 = 25  ⇒ √25 = 5

x1 = - 7 + 5)/- 6 = 2/6 = 1/3

x2 = - 7 - 5)/- 6 = 12/6 = 2

         x              - ∞             - 1           1/3             1                2              + ∞

       x²-1                        +      0    -               -      0       +               +

- 3 x²+7 x - 2                  -            -       0      +               +       0     -      

        P                           -       0    +      0      -      0       +        0     -

l'ensemble des solutions est  S = ]- 1 ; 1/3[U]1 ; 2[    

Explications étape par étape