Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Trouvez des réponses rapides et fiables à vos questions grâce à notre communauté dévouée d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour j'ai besoin d'aide avec cet exercice de math s'il vous plaît

Bonjour Jai Besoin Daide Avec Cet Exercice De Math Sil Vous Plaît class=

Sagot :

Bonjour,

On considère la fonction f(x) = -2x³

x1 et x2 ∈ ]0;+∞[ tels que x1 ≤ x2

a.

On va partir de l'égalité x1 ≤ x2 pour comparer f(x1) et f(x2).

x1 ≤ x2

(x1)³ ≤ (x2)³

Attention on va multiplier par un nombre négatif donc le sens de l'inéquation va changer.

-2*(x1)³ ≥ -2*(x2)³

f(x1) ≥ f(x2)

b.

On sait que x1 ≤ x2 et f(x1) ≥ f(x2), donc la fonction f est décroissante sur ]0;+∞[.

Je te laisse te tracer un graphique si tu as des difficultés à visualiser cela.

c. Voir pièce jointe.

3.

Même raisonnement.

Soit x1 et x2 appartenant à ]-∞;0[ tels que x1 ≤ x2.

x1 ≤ x2

(x1)² ≤ (x2)³

-2*(x1)³ ≥ -2*(x2)³

f(x1) ≥ f(x2)

Donc f est décroissante également sur ]-∞;0[.

Voir pièce jointe.

En espérant que ça t'aide, n'hésites pas si tu as des questions, bonne journée !

Fiona (:

View image devysfiona
View image devysfiona
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.