Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonsoir ! ;)
Réponse :
Exercice 1 :
1. - La forme 1 est appelée " forme canonique de la fonction f (x) ".
- La forme 2 est appelée " forme factorisée de la fonction f (x) ".
- La forme 3 est appelée " forme développée de la fonction f (x) ".
2. - Forme 1 :
f (x) = 3 (x [tex]-\frac{1}{2}[/tex])² - [tex]\frac{27}{4}[/tex]
( rappel : (a - b)² = a² - 2 * a * b + b² ! )
⇒ f (x) = 3 [ x² - 2 * x * [tex]\frac{1}{2}[/tex] + ( [tex]\frac{1}{2}[/tex] )² ] - [tex]\frac{27}{4}[/tex]
⇒ f (x) = 3 (x² - x + [tex]\frac{1}{4}[/tex]) - [tex]\frac{27}{4}[/tex]
⇒ f (x) = 3 * x² + 3 * (- x) + 3 * [tex]\frac{1}{4}[/tex] - [tex]\frac{27}{4}[/tex]
⇒ f (x) = 3x² - 3x + [tex]\frac{3}{4}[/tex] - [tex]\frac{27}{4}[/tex]
⇒ f (x) = 3x² - 3x - 6
- Forme 2 :
f (x) = 3 (x + 1) (x - 2)
⇒ f (x) = 3 [ x * x + x * (- 2) + 1 * x + 1 * (- 2) ]
⇒ f (x) = 3 (x² - 2x + x - 2)
⇒ f (x) = 3 (x² - x - 2)
⇒ f (x) = 3 * x² + 3 * (- x) + 3 * (- 2)
⇒ f (x) = 3x² - 3x - 6
- Forme 3 :
f (x) = 3x² - 3x - 6
⇒ Les trois formes sont donc bien égales !
3. a. VRAI !
En effet, d'après la forme 3 : f (x) = 3x² - 3x - 6
donc f (0) = 3 * 0² - 3 * 0 - 6
⇒ f (0) = - 6
- 6 est bien l'image de 0 par f.
b. VRAI !
En effet, d'après la forme 2 : f (x) = 0 si et seulement si : 3 (x + 1) (x - 2) = 0.
Or, un produit est nul si et seulement si au moins l'un de ses facteurs est nul, c'est-à-dire si :
x + 1 = 0 ou x - 2 = 0
⇒ x = - 1 ou x = 2
L'équation f (x) = 0 admet bien exactement deux solutions : - 1 et 2.
c. VRAI !
En effet, d'après la forme 1 : f (x) = 3 (x [tex]-\frac{1}{2}[/tex])² - [tex]\frac{27}{4}[/tex].
Or, le minimum est atteint lorsque : ( x [tex]-\frac{1}{2}[/tex] )² = 0, c'est-à-dire lorsque : x = [tex]\frac{1}{2}[/tex] !
Et si x = [tex]\frac{1}{2}[/tex], on a :
f ( [tex]\frac{1}{2}[/tex] ) = 3 ( [tex]\frac{1}{2}[/tex] - [tex]\frac{1}{2}[/tex] )² - [tex]\frac{27}{4}[/tex]
⇒ f ( [tex]\frac{1}{2}[/tex] ) = [tex]-\frac{27}{4}[/tex].
[tex]-\frac{27}{4}[/tex] est donc bien le minimum de la fonction.
d. VRAI !
En effet, d'après la forme 3 : f (x) = 3x² - 3x - 6
donc f ( [tex]\frac{1}{6}[/tex] ) = 3 * ( [tex]\frac{1}{6}[/tex] )² - 3 * [tex]\frac{1}{6}[/tex] - 6
⇒ f ( [tex]\frac{1}{6}[/tex] ) = [tex]-\frac{77}{12}[/tex]
et f ( [tex]\frac{5}{6}[/tex] ) = 3 * ( [tex]\frac{5}{6}[/tex] )² - 3 * [tex]\frac{5}{6}[/tex] - 6
⇒ f ( [tex]\frac{5}{6}[/tex] ) = [tex]-\frac{77}{12}[/tex]
⇒ On a donc bien f ( [tex]\frac{1}{6}[/tex] ) = f ( [tex]\frac{5}{6}[/tex] ) !
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.