Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Salut!!
Explications étape par étape:
(Sin⁶x+Cos⁶x=(Sin²x)³+(Cos²x)³-2sin²xcos²x
Sin⁶x+Cos⁶x=(Sin²x+cos²x) [(Sin²x)²+ (cos²x)²-sin²xcos²x)]-2sin²xcos²x
= (Sin²x+cos²x).(Sin⁴x-Sin²xcos²x+cos⁴x)
= (sin²x+cos²x).[(Sin²x)²+ (cos²x)²-2Sin²xcos²-Sin²xcos²x
= 1- 3Sin²x
Explication:
a⁶+b⁶=(a³+b³)²-2a³b³
a³+b³=a²+3a²b+3ab²+b³=>
(a+b) (a²-ab+b²)
Sin²x+cos²x=1
Réponse :
démontrer que:
sin⁶x + cos⁶x = 1 - 3sin²xcos²x
on pose p = sin² x
sin²x + cos²x = 1 ⇔ p + cos²x = 1 ⇒ cos² x = 1 - p
sin⁶x + cos⁶x = 1 - 3sin²xcos²x ⇔ (sin²x)³ + (cos²x)³ = 1 - 3sin²xcos²x
⇔ p³ + (1 - p)³ = 1 - 3 p (1 - p)
or (1 - p)³ = (1 - p)(1 - 2 p + p²) = 1 - 2 p + p² - p + 2 p² - p³ = 1 - 3 p + 3 p²-p³
donc p³ + 1 - 3 p + 3 p²-p³ = 1 - 3 p + 3 p²
⇔ 1 - 3 p + 3 p² = 1 - 3 p + 3 p² donc on abouti à la même expression donc l'égalité est vérifiée
Explications étape par étape
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.