Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonjour, merci de m'aider pour ce problème.

Pierre à acheté un terrain rectangulaire de 3304,8 mètres carrés, le coté le plus long (que l’on appellera A) est 1,771 fois plus long que le petit coté (que l’on appellera B)

Quelle est la longueur du coté A en décimètres?

Quelle est la longueur du coté B en décimètres?

Sagot :

tommus

Bonjour,

D'après l'énoncé, [tex]A = 1,771B[/tex].

Ensuite, puisqu'il s'agit d'un rectangle, son aire est de [tex]A \times B = 1,771 B \times B = 1,771B^2[/tex].

Or, cette aire vaut 3 304,8 m². Il faut alors résoudre une équation.

[tex]1,771B^2=3304,8\\B^2=\dfrac{3304,8}{1,771} \\B = \sqrt{\dfrac{3304,8}{1,771}} \\B \approx 43,2[/tex]

Ainsi, B mesure environ 43,2 mètres. Donc A vaut 1,771 fois B, soit 76,5 mètres environ.

Enfin,

A = 76,5 m = 765 dm

B = 43,2 m = 423 dm

Réponse :

l'aire du rectangle est :  A x B = 3304.8

sachant que  A = 1.771 x B

A : longueur du rectangle

B :  largeur     //       //

1.771 x B² = 3304.8   ⇔ B² = 3304.8/1.771 ≈ 1866.06  

d'où   B = √(1866.06) ≈ 43.1979 m  ≈ 43.20 m = 432 dm

  donc  A = 1.771 x 43.1979 = 76.50 m = 765 dm

Explications étape par étape

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.