Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, merci de m'aider pour ce problème.

Pierre à acheté un terrain rectangulaire de 3304,8 mètres carrés, le coté le plus long (que l’on appellera A) est 1,771 fois plus long que le petit coté (que l’on appellera B)

Quelle est la longueur du coté A en décimètres?

Quelle est la longueur du coté B en décimètres?


Sagot :

tommus

Bonjour,

D'après l'énoncé, [tex]A = 1,771B[/tex].

Ensuite, puisqu'il s'agit d'un rectangle, son aire est de [tex]A \times B = 1,771 B \times B = 1,771B^2[/tex].

Or, cette aire vaut 3 304,8 m². Il faut alors résoudre une équation.

[tex]1,771B^2=3304,8\\B^2=\dfrac{3304,8}{1,771} \\B = \sqrt{\dfrac{3304,8}{1,771}} \\B \approx 43,2[/tex]

Ainsi, B mesure environ 43,2 mètres. Donc A vaut 1,771 fois B, soit 76,5 mètres environ.

Enfin,

A = 76,5 m = 765 dm

B = 43,2 m = 423 dm

Réponse :

l'aire du rectangle est :  A x B = 3304.8

sachant que  A = 1.771 x B

A : longueur du rectangle

B :  largeur     //       //

1.771 x B² = 3304.8   ⇔ B² = 3304.8/1.771 ≈ 1866.06  

d'où   B = √(1866.06) ≈ 43.1979 m  ≈ 43.20 m = 432 dm

  donc  A = 1.771 x 43.1979 = 76.50 m = 765 dm

Explications étape par étape