Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

1)on considere f definie sur R par f(x)=sin x\2+cos x

a) Demontrer que la fonction f est impaire et periodique et periodique de periode 2π


aider moi j'ai besoin dans 5 minute​


Sagot :

PAU64

Bonjour ! ;)

Réponse :

  • Rappel n°1 : une fonction est dite " impaire " si : f (- x) = - f (x).
  • Rappel n°2 : une fonction est dite " périodique de période 2[tex]\pi[/tex] " si : f (x + 2[tex]\pi[/tex]) = f (x).
  • Rappel n°3 : sin (- x) = - sin (x)   ET  cos (- x) = cos (x).
  • Rappel n°4 : sin (x + 2[tex]\pi[/tex]) = sin (x)   ET  cos (x + 2[tex]\pi[/tex]) = cos (x).

(1) f (x) = [tex]\frac{sin(x)}{2+cos(x)}[/tex]

⇒ f (- x) = [tex]\frac{sin(-x)}{2+cos(-x)}[/tex]

⇒ f (- x) = [tex]-\frac{sin(x)}{2+cos(x)}[/tex]

f (- x) = - f (x)

La fonction f est donc bien impaire.

(2) f (x) = [tex]\frac{sin(x)}{2+cos(x)}[/tex]

⇒ f (x + 2[tex]\pi[/tex]) = [tex]\frac{sin(x+2\pi )}{2+cos(x+2\pi )}[/tex]

⇒ f (x + 2[tex]\pi[/tex]) = [tex]\frac{sin(x)}{2+cos(x)}[/tex]

f (x + 2[tex]\pi[/tex]) = f (x)

La fonction f est donc bien 2[tex]\pi[/tex]-périodique.

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.