Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour, pourriez-vous m'aidez pour ces exercices car je n'y arrive vraiment pas. Je suis en seconde et je dois le rendre aujourd'hui. Merci ! :)

Bonjour Pourriezvous Maidez Pour Ces Exercices Car Je Ny Arrive Vraiment Pas Je Suis En Seconde Et Je Dois Le Rendre Aujourdhui Merci class=
Bonjour Pourriezvous Maidez Pour Ces Exercices Car Je Ny Arrive Vraiment Pas Je Suis En Seconde Et Je Dois Le Rendre Aujourdhui Merci class=

Sagot :

ayuda

bjr

urne = 5 noires + 4 blanches + 7 jaunes = 16 au total

p(noire) = 5 noires parmi les 16 = 5/16

p(blanche) = 4 parmi les 16 = 4/16 = 1/4

p(jaune) = tu as compris

ou = 1 - p(noire) - p(blanche) = 1 - 5/16 - 1/4 - tu peux finir en seconde

je te laisse d et e..

Svant

Réponse :

1)

a) L'urne contient 16 boules dont 5 noires

La probabilité de tirer une boule noire est [tex]\frac{5}{16}[/tex]

b) Il y a 4 boules blanches sur les 16 boules.

la probabilité de tirer une boule blanche est de [tex]\frac{4}{16}=\frac{1}{4}[/tex]

c) Il y a 7 boules jaunes sur les 16 boules.

La probabilité de tirer une boule jaune est de [tex]\frac{7}{16}[/tex]

La probabilité de tirer une boule jaune est l’événement contraire de la probabilité de tirer une boule noire ou blanche.

[tex]1 - \frac{5}{16} -\frac{4}{16} =\frac{16-9}{16} =\frac{7}{16}[/tex]

La probabilité de tirer une boule jaune est de [tex]\frac{7}{16}[/tex]

d)

[tex]\begin{tabular}{ l | c | r | v | } couleur\; de\; la\; boule \; tiree & noire & blanche & jaune\\ probabilite & 5/16 & 1/4 & 7/16 \\ \end{tabular}[/tex]

5/16 + 1/4 + 7/16 = 5/16 + 4/16 + 7/16 = 16/16 = 1

2)

a) La probabilité que la roue s’arrête sur le 2 est de [tex]\frac{15}{360} = \frac{1}{24}[/tex]

b) La probabilité que la roue s’arrête sur le 6 est de [tex]\frac{120}{360} =\frac{1}{3}[/tex]

c) [tex]\frac{1}{24} + \frac{1}{3} =\frac{1}{24} +\frac{8}{24} =\frac{9}{24} = \frac{3}{8}[/tex]

La probabilité que la roue s’arrête sur le 2 ou le 6 est de [tex]\frac{3}{8}[/tex]

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.