Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour j’ai besoin d’aide pour cet exercice svp

Bonjour Jai Besoin Daide Pour Cet Exercice Svp class=

Sagot :

Réponse :

f(x) = (2 x² + 3 x - 1)/(x² + x - 2)   or  x² + x - 2 ≠ 0  ⇔ (x + 2)(x - 1) ≠ 0

pour que la fonction existe il faut que x ≠ - 2  et x ≠ 0 donc  Df = R\{-2 ; 1}

1) dresser le tableau de signes de f

     f(x) = 0  ⇔ 2 x² + 3 x - 1 = 0

          Δ = 9 + 8 = 17 > 0  on a deux racines distinctes  

         x1 = (- 3+√17)/4 ≈ 0.3

          x2 = (- 3-√17)/4 = - 3.6

         x             - ∞          - 3.6          - 2         0.3            1             + ∞      

 2 x²+ 3 x - 1             +        0     -              -      0       +           +

 x² + x - 2                  +               +      ||      -                -    ||      +

     f(x)                         +       0     -      ||      +       0      -    ||       +

2) donner l'expression de f '(x)

       f '(x) = [(4 x + 3)(x² + x - 2) - (2 x + 1)(2 x² + 3 x - 1)]/(x²+x-2)²

 = (4 x³ + 4 x² - 8 x + 3 x² + 3 x - 6) - (4 x³ + 6 x² - 2 x + 2 x² + 3 x - 1)/D²

 = (4 x³ + 7 x² - 5 x - 6) -(4 x³ + 8 x² + x - 1)/(x²+x-2)²

 = (4 x³ + 7 x² - 5 x - 6 - 4 x³ - 8 x² - x + 1)/(x²+x-2)²  

f '(x) = (- x² - 6 x  - 5)/(x²+x-2)²

3) dresser le tableau de signe de f '(x)

    f '(x) = (- x² - 6 x  - 5)/(x²+x-2)²   or  (x²+ x - 2)² > 0  donc le signe de f '(x) dépend du signe de - x² - 6 x - 5

         Δ = 36 - 20 = 16  ⇒ √16 = 4

      x1 = 6 + 4)/- 2 = - 5

      x2 = 6 - 4)/-2 = - 1

           x      - ∞             - 5                - 1                  + ∞            

         f '(x)               -       0         +       0         -

Explications étape par étape

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.