Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

bonjour je peut avoir votres aides svp
Exercice 1 Le but de cet exercice est de résoudre l'équation : 9x² – 64 = 0.
On pose : A = 9x² – 64
1) En utilisant les identités remarquables, factoriser A. 2) En déduire les solutions de l'équation 9x² – 64 = 0 .
Exercice 2 Le but de cet exercice est de résoudre l'équation : 6x² – x – 15 = 0.
On pose : B = 4x² – 9 + (2x +3)(x – 2)
1) Développer et réduire l'expression B.
2a) En utilisant les identités remarquables, factoriser : 4x² – 9. b) En déduire que si on factorise l'expression B, on obtient : B = (2x + 3)(3x – 5).
3) En utilisant les questions 1) et 2b), résoudre l'équation : 6x² – x – 15 = 0.


Sagot :

PAU64

Bonjour ! ;)

Réponse :

Exercice 1 :

1) A = 9x² - 64

⇒ A = (3x)² - 8²

( rappel : a² - b² peut se factoriser sous la forme : (a - b) (a + b) ! )

A = (3x - 8) (3x + 8)

2) 9x² - 64 = 0

⇔ (3x - 8) (3x + 8) = 0     ( d'après la question 1) )

Or, un produit est nul si et seulement si au moins l'un de ses facteurs est nul, c'est-à-dire si :

3x - 8 = 0          ou          3x + 8 = 0

⇒ 3x = 8           ou          3x = - 8

x = [tex]\frac{8}{3}[/tex]              ou          x = [tex]-\frac{8}{3}[/tex]

Donc, S = { [tex]-\frac{8}{3}[/tex] ; [tex]\frac{8}{3}[/tex] }.

Exercice 2 :

1) B = 4x² - 9 + (2x + 3) (x - 2)

⇒ B = 4x² - 9 + [ 2x * x + 2x * (- 2) + 3 * x + 3 * (- 2) ]

⇒ B = 4x² - 9 + [ 2x² - 4x + 3x - 6 ]

⇒ B = 4x² - 9 + [ 2x² - x - 6 ]

B = 6x² - x - 15

2) a. 4x² - 9

= (2x)² - 3²

( rappel : a² - b² peut se factoriser sous la forme : (a - b) (a + b) ! )

= (2x - 3) (2x + 3)

b. B = 4x² - 9 + (2x + 3) (x - 2)

⇒ B = (2x - 3) (2x + 3) + (2x + 3) (x - 2)        ( d'après la question 2) a. )

⇒ B = (2x + 3) [ (2x - 3) + (x - 2) ]

B = (2x + 3) (3x - 5)

En factorisant l'expression B, on obtient bien B = (2x + 3) (3x - 5) !

3) 6x² - x - 15 = 0

⇔ (2x + 3) (3x - 5) = 0         ( d'après la question 2) b. )

Or, un produit est nul si et seulement si au moins l'un de ses facteurs est nul, c'est-à-dire si :

2x + 3 = 0           ou          3x - 5 = 0

⇒ 2x = - 3           ou          3x = 5

x = [tex]-\frac{3}{2}[/tex]             ou          x = [tex]\frac{5}{3}[/tex]

Donc, S = { [tex]-\frac{3}{2}[/tex] ; [tex]\frac{5}{3}[/tex] }.

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.