Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour, je ne comprend pas cet exercice de Maths niveau seconde concernant les inéquations. Ce serait super si vous pouviez répondre avec un fichier joint pour les tableaux de signes. Merci pour votre aide.

Bonjour Je Ne Comprend Pas Cet Exercice De Maths Niveau Seconde Concernant Les Inéquations Ce Serait Super Si Vous Pouviez Répondre Avec Un Fichier Joint Pour L class=

Sagot :

Réponse :

B - tableau de signes direct

    4)  (7 - 2 x)/(2 x + 1) ≤ 0

        x      - ∞                -1/2               7/2               + ∞

     7-2x               +                   +         0        -

     2x+1               -          ||        +                    +

        Q                 -         ||          +         0         -

l'ensemble des solutions  S = ]- ∞ ; -1/2[U[7/2 ; + ∞[

5) (- 4 x + 8)(2 x + 9) < 0

         x     - ∞                 -9/2              2                 + ∞  

    -4x+8               +                    +       0        -

     2x+9                -          0         +                +

        P                   -           0         +      0        -

l'ensemble des solutions  S = ]- ∞ ; -9/2[U]2 ; + ∞[

C - factoriser puis tableau de signes

     6) (x +1) x < x² - 1  ⇔ (x +1) x < (x - 1)(x+ 1) ⇔  (x +1) x - (x - 1)(x+ 1) < 0

         ⇔  (x+1)(x - x + 1) < 0  ⇔ x + 1 < 0

             x    - ∞                  - 1                   + ∞

           x+1               -           0          +

      L'ensemble des solutions  S = ]- ∞ ; - 1[

      7) (2 x - 3)² > (4 x + 5)²  ⇔  (2 x - 3)² - (4 x + 5)² > 0

               ⇔ (2 x - 3 + 4 x + 5)(2 x - 3 - 4 x - 5) > 0

                ⇔ (6 x + 2)(- 2 x - 8) > 0   ⇔ 4(3 x + 1)(- x - 4) > 0

               x     - ∞                 - 1/3               -1/4                 + ∞

            3x+1               -            0        +                   +

           -x-4                 +                      +         0        -

             P                   -             0        +         0        -    

l'ensemble des solutions  S = ]- 1/3 ; - 1/4 [

      8) 3/(x - 4) < 2   ⇔ 3/(x - 4) - 2 < 0 ⇔ (3 - 2(x - 4))/(x-4) < 0

              ⇔ (3 - 2 x + 8)/(x- 4) < 0 ⇔ (- 2 x + 11)/(x - 4) < 0

                 x      - ∞                4               11/2                + ∞

            -2x+11              +                  +       0         -

               x - 4              -        ||         +                   +

               Q                  -        ||          +        0         -

  l'ensemble des solution S = ]- ∞ ; 4[U]11/2 ; + ∞[

       9)  x² - 9 ≥ 0  ⇔ (x + 3)(x - 3) ≥ 0

             x     - ∞             - 3             3              + ∞

           x+3              -        0      +             +

           x-3               -                 -     0      +

            P                 +        0      -      0      +

l'ensemble des solutions  S = ]- ∞ ; - 3]U[3 ; + ∞[    

         

           

Explications étape par étape