Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour,
Je suis en 4° et je bloque sur cet exercice.
Pouvez-vous m'aider svp ?


Bonjour Je Suis En 4 Et Je Bloque Sur Cet Exercice Pouvezvous Maider Svp class=

Sagot :

Vins

bonjour

x + 3 = 6

x = 6 - 3

x = 3

x - 1 = 4

x = 4 + 1

x = 5

3 x - 4 = 8

3 x = 8 + 4

3 x = 12

x = 4

x /4 - 2 = - 7

x /4  = - 28/4 + 8/4

x = - 28 + 8

x = - 20

3 x - 6 ( 3 - 4 x ) =  9 x - 2

3 x  - 18 + 24 x = 9 x - 2

27 x - 9 x = - 2 + 18

16 x  = 16

x = 1

( x - 2) / 4 =  5 x /4 - x

( x - 2 ) / 4  = 5 x /4 - 4 x /4

x - 2 = 5 x - 4 x

x - 5 x + 4 x = 2

0 x = 2   donc pas de solution

n + n + 1 + n + 2 = 2015

3 n = 2012

2012 non divisible par 3  donc cela n'existe pas

n + n + 1 + n + 2  = 2016

3 n = 2013

n = 671

671 + 672 + 673 = 2016

PAU64

Bonjour ! ;)

Réponse :

Exercice 1 :

a. x + 3 = 6

⇒ x = 6 - 3

x = 3

b. 3x = 6

⇒ x = 6 / 3

x = 2

c. 3x - 4 = 8

⇒ 3x = 8 + 4

⇒ 3x = 12

⇒ x = 12 / 3

x = 4

d. x - 1 = - 4

⇒ x = - 4 + 1

x = - 3

e. - 4x = - 5

⇒ x = - 5 / (- 4)

x = [tex]\frac{5}{4}[/tex]

f. [tex]\frac{x}{4}[/tex] - 2 = - 7

⇒ [tex]\frac{x}{4}[/tex] = - 7 + 2

⇒ [tex]\frac{x}{4}[/tex] = - 5

⇔ x = - 5 * 4

x = - 20

g. 3x - 6 (3 - 4x) = 9x - 2

⇒ 3x - 6 * 3 - 6 * (- 4x) = 9x - 2

⇒ 3x - 18 + 24x = 9x - 2

⇒ 27x - 18 = 9x - 2

⇒ 27x - 9x = - 2 + 18

⇒ 18x = 16

⇒ x = 16 / 18

x = [tex]\frac{8}{9}[/tex]

h. [tex]\frac{x-2}{4}[/tex] = [tex]\frac{5}{4} x[/tex] - x

⇒ [tex]\frac{x-2}{4}[/tex] = [tex]\frac{1}{4} x[/tex]

⇔ x - 2 = x         ( tu multiplies en effet  [tex]\frac{x-2}{4}[/tex] = [tex]\frac{1}{4} x[/tex] par 4 )

⇒ x - x = 2

0 = 2

Impossible ! L'équation " [tex]\frac{x-2}{4}[/tex] = [tex]\frac{5}{4} x[/tex] - x " n'admet donc aucune solution !

Entiers consécutifs :

a. Pour savoir s'il existe trois entiers consécutifs dont la somme est 2015, il faut résoudre l'équation : n + (n + 1) + (n + 2) = 2015 !

n + (n + 1) + (n + 2) = 2015

⇒ 3n + 3 = 2015

⇒ 3n = 2015 - 3

⇒ 3n = 2012

⇒ n = 2012 / 3

n ≈ 670,66...

Comme [tex]\frac{2012}{3}[/tex] ne donne pas un entier, on en déduit qu'il n'existe pas d'entiers consécutifs dont la somme est 2015.

b. Pour savoir s'il existe trois entiers consécutifs dont la somme est 2016, il faut résoudre l'équation : n + (n + 1) + (n + 2) = 2016 !

n + (n + 1) + (n + 2) = 2016

⇒ 3n + 3 = 2016

⇒ 3n = 2016 - 3

⇒ 3n = 2013

⇒ n = 2013 / 3

n = 671

Comme [tex]\frac{2013}{3}[/tex] = 671, on en déduit qu'il existe trois entiers consécutifs dont la somme est 2016 : 671 ; 672 et 673.

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.