Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

1. PAUL est un parallélogramme tel que : PU = AL

Démontrer que PAUL est un rectangle.​

Sagot :

Un rectangle est un cas particulier de parallélogramme, donc :

ses côtés opposés sont parallèles et de même longueur ;
ses deux diagonales se coupent en leur milieu ;
ce milieu est un centre de symétrie du rectangle.
Il possède des propriétés supplémentaires :

ses diagonales ont même longueur ;
il possède deux axes de symétrie, qui sont les médiatrices de ses côtés ;
les diagonales étant de même longueur et sécantes en leur milieu O, les quatre sommets du rectangle sont équidistants de O, ce qui signifie qu'il existe un cercle de centre O passant par ces quatre sommets, appelé cercle circonscrit au rectangle, qui est lui-même dit inscrit dans ce cercle.