Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Explications étape par étape:
Salut, il faut raisonner en visualisant la situation à chaque fois.
1a) Prélèvements successifs de 2 poissons sans remise. Au total dans l'aquarium, on dénombre 4+n poissons. Au 1er tour : 4 chances sur 4+n d'obtenir 1 poisson rouge. Au 2e tour, en ayant déjà obtenu 1 poisson rouge, il reste 4+n-1 = 3+n poissons dans l'aquarium, 3 rouges, et n noirs. Donc 3 chances sur 3+n. Par le caractère multiplicatif des probabilités, tu déduis P1 = 12 / (4+n)(3+n).
1b) Même raisonnement qu'auparavant, 1er tour : n chances sur 4+n. Puis au 2e tour, (n-1) chances sur 3+n, donc P2 = n(n-1) / (3+n)(4+n).
2) La proba d'obtenir rouge puis noir est égale à celle d'obtenir noir puis rouge par symétrie. Au 1er tour, pour rouge, on a 4 chances sur 4+n. Au 2e tour, pour noir, n poissons noirs, 3 poissons rouges, donc n chances sur 3+n. Donc finalement, P = 4n / (3+n)(4+n) = 4n / [n^2 + 7n + 12]
On dérive, ce qui fournit P' = [4(n^2 + 7n + 12) - 4n(2n + 7)] / (3+n)(4+n)^2
= [-4n^2 + 48] / (3+n)(4+n)^2.
Le numérateur est un trinôme du 2nd degré, dont le coefficient devant le monôme est négatif, et -4n^2 + 48 = 0 équivaut à n = + ou - 2*rac(3).
Sur ]-infini ; -2*rac(3)[ union ]2rac(3) ; + infini[, P' < 0, et sur ]-2rac(3) ; 2rac(3)[, P' > 0.
Puisque n est strictement supérieur ou égal à 1, on déduit les variations de P :
Croissante sur [1 ; 2rac(3)] puis décroissante après. Mais 2 rac(3) n'est pas un entier, il faut donc choisir la valeur correcte de n qui convient.
Rac(3) vaut environ 1,732, donc 2rac(3) = 3,464. Il faut donc choisir soit n = 3, soit n = 4.
Respectivement : P(3) = 12 / (6*7) = 12/42 = 2/7.
P(4) = 16 / (7*8) = 16 / 56 = 2/7. Les valeurs de n qui conviennent sont donc, empiriquement, n=3 ou n=4.
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.