Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour pouvez vous m’aidez s’il vous plaît merci

Bonjour Pouvez Vous Maidez Sil Vous Plaît Merci class=

Sagot :

Réponse :

Partie A - indiquer si les affirmations suivantes sont vraies ou fausses. Justifier votre réponse

1)  (- 1) est racine du polynôme  2 x³ - 3 x² + 4 x - 3

       (- 1) est racine du polynôme s'il vérifie 2*(-1)³ - 3*(- 1)² + 4*(-1) - 3 = 0

         ⇔ - 2 - 3 - 4 - 3 = - 12 ≠ 0  donc (-1) n'est pas racine du polynôme

           donc l'affirmation est  fausse

2) l'équation x² = - 4 admet une unique solution   cette affirmation est fausse  car l'équation  x² = - 4  n'a pas de solutions dans R et un carré est toujours positif ou nul

3) le nombre de racines distinctes du polynôme P(x) = 3(x - 1)(x - 4)² est 3

      cette affirmation est fausse, car le nombre de racines distinctes est composé de deux racines différentes et non d'une seule racine, de plus 3

n'est pas une racine de P(x);  les racines distinctes de P(x) sont 1 et 4

Partie B

indiquer la bonne réponse

1) P(x) = - 2 x³ - 4 x² + 2 x + 4

   P(1) = - 2 - 4 + 2 + 4 = - 6 + 6 = 0   donc   1  est une solution de P(x)

 on écrit  P(x) = (x - 1)(a x² + b x + c)

                       = a x³ + b x² + c x - a x² - b x - c

                       = a x³ + (b-a) x² + (c -b) x - c

donc   a = - 2  ; b-a = - 4 ; c-b = 2  et  c = - 4

 on en déduit :  a = - 2 ; b = - 2 et c = - 4

             P(x) = (x - 1)(- 2 x² - 2 x - 4)  ⇔ P(x) = - 2(x - 1)(x² + x + 2)

or x² + x + 2   a pour  Δ = 1 - 8 = - 7  < 0  pas de solution, donc P(x) a une seule seule racine  x = 1

donc la bonne réponse est  a) une unique racine  

2) la forme factorisée de Q(x) = 2 x³ + 11 x² - 20 x + 7  est:

     il suffit de développer  a) ; b) ; c) pour voir celle qui correspond à Q(x)

3) dans R l'ensemble des solutions de l'équation  2 x³ + 11 x² - 20 x + 7 = 0 est :

pour répondre à cette question, il faut utiliser le résultat de la question 2

Explications étape par étape

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.