Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.


Bonjour, s'il vous plaît j'ai besoin de votre aide
Il est très long et difficile
Et mercii❤️❤️
On considère la droite (d) d'équation
y =(2/3)x-4, coupant l'axe des abscisses en B et
l'axe des ordonnées en A.
E est le point de
coordonnées (3:5),(d') est la droite passant par
E et parallèle à (d). On désigne par F le point
de (d') d'abscisse-3 .
1° Calcule les coordonnées de A et de B.
2º Écris une équation de (d').
3° Calcule les coordonnées du vecteur EF et celles de AB . Quel est le translaté du point E
par la translation de vecteur BA ? Justifie
4° Calcule la pente de (EB). Les droites (EB) et (d) sont-elles perpendiculaires ?
5º S est le point de (d') d'ordonnée 2. Calcule la
longueur du segment [SB] .
6° La droite (d') coupe l'axe des ordonnées en
M. Calcule , à 10-2 près par défaut, la distance
de Mà (d)​


Sagot :

Svant

Réponse:

1)

l'abscisse du point A est xA=0

yA=(2/3)×0-4

yA = -4

A(0;-4)

l'ordonnee de B est yB=0

(2/3)xB-4=0

(2/3)xB = 4

xB = 6

B(6;0)

2)

(d')//(d) donc (d') a le meme coefficient directeur que (d)

y = (2/3)x + p

E appartient à (d')

5 = (2/3)×3 + p

p=5-2

p=3

(d') : y = (2/3)x + 3

3)

Calculons l'ordonnée de F

yF = (2/3)×(-3)+3

yF = 1

F(-3; 1)

[tex]\overrightarrow{EF}(-3-3; 1-5) \\ \overrightarrow{EF}( - 6; - 4)[/tex]

[tex]\overrightarrow{AB}(6 - 0;0 + 4) \\\overrightarrow{AB}(6 ; 4) [/tex]

On remarque que

[tex]\overrightarrow{EF} = - \: \overrightarrow{AB} \\ \overrightarrow{EF} = \overrightarrow{BA}[/tex]

le translaté du point E est le point F.

4. La pente de la droite (EB) est :

[tex]a = \frac{0 - 5}{6 - 3} = - \frac{5}{3} [/tex]

Deux droites sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1

(-5/3)×(2/3) = -10/9 ≠ -1

les droites (EB) et (d) ne sont pas perpendiculaires.

5)

yS=2

2 = (2/3)xS + 3

xS = (2-3)/(2/3)

xS = -3/2

S(-3/2; 2)

[tex]SB = \sqrt{ {(6 + \frac{3}{2} )}^{2} + {(0 - 2)}^{2} } \\ SB = \sqrt{60.25} [/tex]

SB≈7,8

6)

L'abscisse de M est xM=0

yM=(2/3)×0+3

yM=3

M(0;3)

Une equation cartesienne de d est

2x-3y-12=0

[tex]d(M, d) = | \frac{2x_{M} - 3y_{M} - 12}{ \sqrt{{2}^{2} + {( - 3)}^{2} } } | [/tex]

[tex]d(M, d) = | \frac{2 \times 0- 3 \times 3 - 12}{ \sqrt{{2}^{2} + {( - 3)}^{2} } } | [/tex]

[tex]d(M, d) = 5.82[/tex]

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.