Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Réponse :
Bonjour, tu sais que un produit de facteurs est nul si et seulement si l'un des deux est nul:
tu peux donc écrire ton équation comme cela:
[tex]2cos(x) - \sqrt{2} =0[/tex] ou [tex]sin(x) ^{2} -1=0[/tex]
pour la première expression, en isolant le cos(x) tu obtiens :
[tex]cos(x) = \frac{\sqrt{2} }{2}[/tex] tu reconnais la une valeur de cosinus d'angle remarquable étant :[tex]\frac{\pi }{4}[/tex] cependant en regardant la figure en dessous tu remarque qu'il y a plusieurs valeurs d'angles dont le cos. sont égales à [tex]\frac{\sqrt{2}}{2}[/tex] (points C et D)
Les solutions sont demandé dans R donc il faut prendre en compte tout les angles possibles, on a donc [tex]x=\frac{ \pi }{4}+2k\pi[/tex] mais aussi [tex]x=\frac{ -\pi }{4}+2k\pi[/tex] avec k ∈ Z
Pour la deuxième expression on peut l'écrire [tex]sin(x)^{2} =1[/tex] donc on sait que :
[tex]sin(x)=1[/tex] ou [tex]sin(x)=-1[/tex]
En regardant encore une fois sur la figure tu remarque que les valeurs d'angles dont les sin sont égales à 1 ou -1 ( points E et F ) sont :
[tex]x = \frac{\pi }{2} +2p\pi[/tex] ou [tex]x = \frac{-\pi }{2} +2p\pi[/tex] que l'on peut rassembler en :
[tex]x = \frac{\pi }{2} +p\pi[/tex] avec p ∈ Z
Finalement l'ensemble S des solutions est :
S = {[tex]x=\frac{ \pi }{4}+2k\pi[/tex];[tex]x=\frac{ -\pi }{4}+2k\pi[/tex], k ∈ Z ; [tex]x = \frac{\pi }{2} +p\pi[/tex], p ∈ Z }
J'espère que tu as compris, c'est une chose un peu compliqué au début n'hésite pas a poser plus de questions.

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.