Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour !
Pour un exercice je dois montrer que :
Deux variables aléatoires réelles suivant une loi de Bernoulli sont indépendantes si et seulement si leur covariance est nulle.
Quelqu’un aurait des pistes, une idée de la méthode ?
Mercii !


Sagot :

Réponse :

Explications étape par étape

soit X et Y 2 variables aléatoires

X et Y suivent une loi de Bernouilli de paramètres p et p'

donc Var(X)=p² et Var(Y)=p'²

ainsi cov(X,Y)=∑(x.y)-p.p'

X et Y indépendantes équivaut à Var(X.Y)=Var(X).Var(Y)

donc ∑(x.y)²-E(XY)=(∑x-p²).(∑y-p'²)

donc ∑(x.y)²-E(XY)=∑x.∑y-p².∑y-∑x.p'²+(pp')²

donc ∑(x.y)²-∑(x.y)=∑x.∑y-p².∑y-∑x.p'²+(pp')²

donc (∑(x.y)-p.p')²=0

donc cov(X,Y)=0

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.