Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour,
Besoin d aide.
Démontrer que la soustraction de 2 multiples de 7 est un multiple de 7
Merci pour votre aide ​


Sagot :

Réponse :

7a+7b=7(a+b)=7n ? Puisque a et b sont deux nombres entiers naturels, a+b est également un nombre entier naturel. La somme de deux multiples de 7 est de la forme 7n et n etant un entier naturel, cette somme est un multiple de 7

Explications étape par étape

tommus

Bonjour !

Tu as publié au niveau collège, es-tu au collège ?

Un multiple de 7 est de la forme 7k ("7 fois quelque chose"), avec k un entier.

Un autre multiple de 7 est de la forme 7k', avec k' un autre entier.

Il nous reste à calculer 7k - 7k' (différence de deux multiples de 7). En factorisant par 7, on obtient :

7k - 7k' = 7(k - k') : ce nombre est bien de la forme "7 fois quelque chose" et comme k et k' sont des entiers, alors le nombre k - k' est aussi un entier. Donc 7(k - k') est un multiple de 7.

Ainsi, la soustraction de deux multiples de 7 est un multiple de 7.

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.