Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Réponse :
Bonjour
Partie A
1) g'(x) = [tex]e^{x}[/tex] + 1
g'(x) > 0
voir tableau de variations en pièce jointe
2) g(x) est strictement croissante sur [0 ; +∞[ , à valeur sur [3 ; +∞[.
Donc g(x) > 0
Partie B
1) f'(x) = 1 - [tex]\frac{e^{x}-(3+x)e^{x} }{e^{2x} }[/tex] = 1 - [tex]\frac{e^{x}(1-3-x) }{e^{2x} }[/tex] = 1 - [tex]\frac{-2-x}{e^{x} }[/tex] = [tex]\frac{e^{x}+x+2 }{e^{x} }[/tex] = [tex]\frac{g(x)}{e(x)}[/tex]
2) On a vu dans la partie A que g(x) > 0 sur [0 ; +∞[
Donc f'(x) > 0 sur [0 ; +∞[
Voir tableau de variations en pièce jointe
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.