Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour , pouvez vous m'aider s'il vous plait ? Merci :)

pas besoin de mettre une reponse je l'ai réussi


Bonjour Pouvez Vous Maider Sil Vous Plait Merci Pas Besoin De Mettre Une Reponse Je Lai Réussi class=

Sagot :

Réponse :

Bonjour

Partie A

1) g'(x) = [tex]e^{x}[/tex] + 1

g'(x) > 0

voir tableau de variations en pièce jointe

2) g(x) est strictement croissante sur [0 ; +∞[ , à valeur sur [3 ; +∞[.

Donc g(x) > 0

Partie B

1) f'(x) = 1 - [tex]\frac{e^{x}-(3+x)e^{x} }{e^{2x} }[/tex] = 1 - [tex]\frac{e^{x}(1-3-x) }{e^{2x} }[/tex] = 1 - [tex]\frac{-2-x}{e^{x} }[/tex] = [tex]\frac{e^{x}+x+2 }{e^{x} }[/tex] = [tex]\frac{g(x)}{e(x)}[/tex]

2) On a vu dans la partie A que g(x) > 0 sur [0 ; +∞[

Donc f'(x) > 0 sur [0 ; +∞[

Voir tableau de variations en pièce jointe

View image ecto220
View image ecto220
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.