Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Soit X une variable aléatoire suivant la loi normale d'espérance μ=110 telle que
P ( 101 << X << 119 ) = 0,58
Calculer l'écart type de X arrondi à 10^​−2.
​​


Sagot :

Svant

Réponse:

P((101-110)/σ ≤ (X-110)/σ ≤ (119-110)/σ) = 0,58

Z = (X-110)/σ

Z suit une loi normale centrée reduite N(0;1)

P( -9/σ ≤ Z ≤ 9/σ) = 0,58

A la calculatrice on trouve :

P ( -0,806 ≤ Z ≤ 0,806) = 0,58

avec μ=0 et σ =1

avec FracNormale sur ti

InvNrm sur Casio

9/σ = 0,806

σ = 9/0,806

σ ≈ 11,17

View image Svant
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.