Answered

Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

A RENDRE POUR DEMAIN !!!!!
Je suis (littéralement) à bout donc j'espère vraiment qu'il y a une âme charitable par là.
Voici l'exercice donné :
1°) Quelle est la fonction dérivée de la fonction logarithme (notée ln) sur ]0 ; +∞[ ? Justifier le sens de variation de cette fonction sur son ensemble de définition.
2°) On sait que ln2 ≈ 0,693 et que ln7 ≈ 1,946 .
Sans utiliser de calculatrice précisez si l'équation ln x =1,5 admet une solution dans l'intervalle [2;7] et justifiez votre réponse.
3°) Déterminez le plus petit entier n tel que (1,025)n > 2, en résolvant l’inéquation.

Ce que j'ai fait :
1) ln'(x) = 1/X. Elle est comprise en 0 et l'infini et 0 est non compris. C'est pourquoi elle sera strictement positive et donc croissante
2) Si x > 0 on a
Ln a = b ==> a = e (exposant) b
alors Ln x = 1,5 ==> x = e (exposant) 1,5
Pour le 3) je sèche…
J'espère vraiment que vous pourrez m'aider, ceci dit je comprendrais si vous ne vouliez pas..


Sagot :

Réponse:

Bonsoir

Explications:

1) La fonction ln est dérivable sur ]0,+oo[ et ln'(x)=1/x. La fonction inverse (1/x) est positive sur ]0,+oo[ donc ln est croissante sur ce même intervalle.

2) On a : 0.693<1,5<1.946, ce qui revient à écrire : ln(2)<1,5<ln(7) ou encore ln(2)<ln(x)<ln(7). Or, ln est croissante donc 2<x<7, ce qui confirme qu'il existe x dans [2,7] tel que ln(x)=1.5.

3) 1.025n > 2, donc n > 2/1.025 qui est environ égal à 1.95. Donc n n'égal pas 1 car 1<1.95. Par contre, n=2 car cst le plus petit entier qui vérifie n>1.95.

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.