Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Bonjour, on utilise la formule [tex]\sin(2x)=2 \sin(x) \cos(x)[/tex].
Il vient :
[tex]\frac{\sin(2x)}{\sin(x)-5x}=\frac{2\cos(x)}{1-5\frac{x}{\sin(x)}}[/tex]
Or, par croissances comparées : [tex]\frac{x}{\sin(x)} \to_{x \to 0} 1[/tex]
et, par continuité de cos en 0 : [tex]\cos(x) \to_{x \to 0} \cos(0)=1[/tex]
Ainsi :
[tex]\underset{x \to 0}{\text{lim}}\frac{\sin(2x)}{\sin(x)-5x}=\frac{2}{1-5}=\frac{-1}{2}[/tex].
(Plus simplement, si tu connais les DL, tu peux écrire :
[tex]\frac{\sin(2x)}{\sin(x)-5x}=\frac{2x +o(x)}{-4x+o(x)}=\frac{-1}{2}+o(1)[/tex], et retrouver ainsi -1/2.)
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.