Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
On veut montre : [tex]\text{n pair} \iff a \wedge b=1[/tex].
1) [tex]\underline{\Longleftarrow}[/tex]: Par contraposition, supposons n impair.
Il s'écrit n=2k+1 avec k un entier naturel.
Alors, [tex]a=2(2k+1)[/tex] et [tex]b=3(2k+1)+1=6k+4=2(3k+2)[/tex].
a et b sont donc tous les deux pairs, donc leur pgcd est au moins 2, et non 1.
Ainsi, a et b ne sont pas premiers entre eux.
2) [tex]\underline{\Longrightarrow}[/tex]:
Supposons n pair, il s'écrit donc n=2k, avec k un entier naturel.
Si a et b ne sont pas premiers entre eux, ils admettent un diviseur premier commun. Supposons, par l'absurde, que ce soit le cas et notons p un tel diviseur.
Alors, [tex]p|(2n=4k)[/tex] (p "divise" 2n) et [tex]p|(3n+1=6k+1)[/tex].
Par le lemme d'Euclide, puisque p premier et [tex]p|4k[/tex], [tex]p|4[/tex] ou [tex]p|k[/tex].
- Si p divise 4, alors p est pair donc 6k+1 l'est aussi, ce qui n'est pas le cas.
- Donc, [tex]p|k[/tex]. Or [tex]p|(6k+1)[/tex] donc [tex]p|((6k+1)-6k)[/tex], d'où [tex]p|1[/tex] : absurde.
Ainsi, a et b sont premiers entre eux.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.