Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
On réalise le changement de variable suggéré : [tex]x=t^{1/3}[/tex] donc [tex]\mathrm{d}x=\frac{1}{3}\times t^{-2/3} \mathrm{d}t[/tex].
On a alors (les bornes restent 0 et 1) :
[tex]\int_{0}^1 \frac{x^2}{1+x^6} \mathrm{d}x=\int_0^1 \frac{t^{2/3}}{1+t^2} \frac{t^{-2/3}}{3} \mathrm{d}t=\frac{1}{3} \int_0^1 \frac{1}{1+t^2} \mathrm{d}t=\frac{1}{3} [\arctan(t)]_0^1 =\frac{1}{3} (\frac{\pi}{4}-0)=\frac{\pi}{12}[/tex]
D'où : [tex]\boxed{I=\frac{\pi}{12}}[/tex].
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.