Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour, j'ai besoin de votre aide sur ce calcul d'intégrale ci-joind.
Merci d'avance!


Bonjour Jai Besoin De Votre Aide Sur Ce Calcul Dintégrale Cijoind Merci Davance class=

Sagot :

On réalise le changement de variable suggéré : [tex]x=t^{1/3}[/tex] donc [tex]\mathrm{d}x=\frac{1}{3}\times t^{-2/3} \mathrm{d}t[/tex].

On a alors (les bornes restent 0 et 1) :

[tex]\int_{0}^1 \frac{x^2}{1+x^6} \mathrm{d}x=\int_0^1 \frac{t^{2/3}}{1+t^2} \frac{t^{-2/3}}{3} \mathrm{d}t=\frac{1}{3} \int_0^1 \frac{1}{1+t^2} \mathrm{d}t=\frac{1}{3} [\arctan(t)]_0^1 =\frac{1}{3} (\frac{\pi}{4}-0)=\frac{\pi}{12}[/tex]

D'où : [tex]\boxed{I=\frac{\pi}{12}}[/tex].

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.