Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour, est ce que quelqu'un peut m'aider svp.
J'ai une fonction carré inverse : f(x) = -3 / (x+2)²
on me demande de résoudre par le calcul l'inéquation f(x)∠ -12 (f(x) inférieure à -12)
Comment fait-on ?
Merci


Sagot :

On peut multiplier les deux membres de l'inéquation par [tex](x+2)^2[/tex], sans changer le signe de l'inégalité (puisque [tex](x+2)^2 \ge 0[/tex]).

D'où :

[tex]f(x) \le -12 \iff \frac{-3}{(x+2)^2} \le -12 \iff -3 \le -12(x+2)^2[/tex][tex]\iff -1 \le -4(x+2)^2[/tex]

donc

[tex]f(x) \le -12 \iff -4x^2 -16x-15 \ge 0 \iff 4x^2+16x+15 \le 0[/tex].

On calcule le discriminant :

[tex]\Delta = 16^2-4 \times 4 \times 15=16[/tex]

donc on obtient deux solutions : [tex]x_{1/2} = \frac{-16 \pm \sqrt{16}}{2 \times 4}=\frac{-3}{2} \, ou \, \frac{-5}{2}[/tex].

Comme le coefficient du terme de plus haut degré est positif (c'est 4), le trinôme est négatif entre ces deux racines.

Les solutions sont donc [tex]\boxed{x \in [\frac{-5}{2},\frac{-3}{2}]}[/tex] et [tex]\boxed{x \not =-2}[/tex] (il faut que f(x) ait un sens, ce qui n'est pas le cas si x=-2, car on divise alors par 0).

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.