Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour je n’arrive pas à faire cette exercice...
Pourriez-vous m’aidez svp
Merci d’avance :)


Bonjour Je Narrive Pas À Faire Cette Exercice Pourriezvous Maidez Svp Merci Davance class=

Sagot :

Réponse :

f(x) = x² + 3 x + 1   définie sur R

g(x) = - 1/(x+2)   définie sur  R \ {- 2}

1) étudier les variations de la fonction f et dresser son tableau de variation

   f(x) = x² + 3 x + 1  ⇒  f '(x) = 2 x + 3  ;   f '(x) = 0 = 2 x + 3  ⇔ x = - 3/2

        x     - ∞               - 3/2               + ∞

      f '(x)              -           0         +

f '(x) < 0 sur l'intervalle ]- ∞ ; - 3/2]  ⇒ f est décroissante sur  ]- ∞ ; - 3/2]

f '(x) > à   //         //         [- 3/2 ; + ∞[ ⇒ f est croissante sur [- 3/2 ; + ∞[

     x     - ∞                                  - 3/2                                  + ∞

tableau de variation de f

    f(x)   + ∞→→→→→→→→→→→→→→→ - 5/4 →→→→→→→→→→→→→→ + ∞

                      décroissante                       croissante

2) étudier les variations de la fonction g et dresser son tableau de variation

         g(x) = - 1/(x+2) ⇒ g '(x) = 1/(x+2)²

1 > 0  et   (x + 2)² > 0   donc la fonction  g est croissante sur R \ {- 2 }

tableau de variation de g

     x    - ∞                                       - 2                                        + ∞

   g(x)     0 →→→→→→→→→→→→→→ +∞   || - ∞ →→→→→→→→→→→→→→   0

                      croissante                                croissante

3) h(x) = f(x) - g(x)  définie sur   R \ {- 2 }

    a) montrer que h(x) = (x + 1)²(x + 3)/(x + 2)

    h(x) =  f(x) - g(x) ⇔ h(x) = x² + 3 x + 1)  -  (- 1/(x + 2))

⇔ h(x)  = ((x + 2)(x² + 3 x + 1) + 1)/(x + 2)

            = (x³ + 5 x² + 7 x + 3)/(x+2)

   h(x) = (x + 1)²(x + 3)/(x + 2)

          = (x² + 2 x + 1)(x + 3)/(x+2)

          = (x³+ 3 x² + 2 x² + 6 x + x + 3)/(x + 2)

          = (x³ + 5 x² + 7 x + 3)/(x+2)

les deux expressions sont identiques  donc  h(x) = (x + 1)²(x + 3)/(x + 2)  

      b) étudier le signe de h(x)

          h(x) = (x + 1)²(x + 3)/(x + 2)     or  (x + 1)² > 0

          x     - ∞                  - 3                  - 2                  + ∞

         x+3               -           0          +                    +

         x+2               -                        -        ||           +

          h(x)              +           0           -       ||            +

     c) déterminer la position relative de Cg par rapport à g

         h (x) > 0   sur l'intervalle ]- ∞ ; - 3]U]- 2 ; + ∞[  donc la courbe Cf est au-dessus de la courbe Cg

         h(x) < 0  sur l'intervalle [- 3 ; - 2[  donc la courbe Cf est en dessous de la courbe Cg

         h(x) = 0  ⇔  (x + 1)²(x + 3) = 0    car  x + 2 ≠ 0

       ⇔ (x + 1)² = 0 ⇔ x = - 1   ou  x + 3 = 0 ⇔ x = - 3

les abscisses des points d'intersection de Cf et  Cg  sont   - 3 ; - 1

   

Explications étape par étape

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.