Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Vous pouvez m’aidez pour l’exercice 79 svp

Vous Pouvez Maidez Pour Lexercice 79 Svp class=

Sagot :

Exercice 79 - Comme au Brevet

1) Développer puis réduire

A = [tex](3x-4)^{2} +(3x-4)(7x-5)[/tex]

A = (3x -4)(3x -4) + (3x -4)(7x -5)

A = 9[tex]x^{2}[/tex] -12x -12x + 16 + 21[tex]x^{2}[/tex] -15x -28x + 20

A = 30[tex]x^{2}[/tex] -67x + 36

B = [tex](4x+2)^{2} -(5-2x)(4x+2)[/tex]

B = (4x +2)(4x +2) - (5 -2x)(4x +2)

B = 16[tex]x^{2}[/tex]  + 8x + 8x + 4 - (20x +10 -8[tex]x^{2}[/tex] -4x)

B = 16[tex]x^{2}[/tex]  + 16x + 4 -20x -10 +8[tex]x^{2}[/tex] +4x

B = 24[tex]x^{2}[/tex] -6

C = [tex](5x+1)^{2} -4[/tex]

C = (5x +1)(5x +1) - 4

C = 25[tex]x^{2}[/tex] + 5x + 5x + 1 - 4

C = 25[tex]x^{2}[/tex] + 10x -3

2) Factoriser

A = [tex](3x-4)^{2} +(3x-4)(7x-5)[/tex]

A = (3x -4) ((3x-4) + (7x -5))

A = (3x -4) (3x - 4 + 7x - 5)

A = (3x -4)(10x -9)

B = [tex](4x+2)^{2} -(5-2x)(4x+2)[/tex]

B = (4x + 2) ((4x + 2) - (5 - 2x))

B = (4x + 2) (4x + 2 - 5 + 2x)

B = (4x + 2)(6x -3)

C = [tex](5x+1)^{2} -4[/tex]

C = ((5x + 1) - 2)((5x + 1) + 2)

C = (5x + 1 - 2)(5x + 1 +2)

C = (5x -1)(5x +3)

3) Vérification

Si le résultat du développement de l’expression factorisée est bien égal au résultat de l’expression développée alors l’expression est vérifiée.

A =  (3x -4)(10x -9)

A = 30[tex]x^{2}[/tex] -27x -40x + 36

A = 30[tex]x^{2}[/tex] -67x + 36

B = (4x + 2)(6x -3)

B = 24[tex]x^{2}[/tex] -12x + 12x -6

B = 24[tex]x^{2}[/tex] -6

C = (5x -1)(5x +3)

C = 25[tex]x^{2}[/tex] + 15x -5x -3

C = 25[tex]x^{2}[/tex] + 10x -3

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.