Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Explications étape par étape:
Bonsoir, concernant les limites, il te faut juste savoir les cas indéterminés, qui sont de la forme : 0*infini, 0/0, infini - infini, infini / infini. Toutes les autres formes de limites peuvent être résolues.
1- lim ln(x) = - infini lorsque x tend vers 0+ (cela signifie que x tend vers 0, en restant strictement supérieur à 0) donc lim -(1/4)*ln(x) = + infini. D'autre part, lim x = 0+ lorsque x tend vers 0+. Par operations sur les limites, ton expression tend vers + infini.
2- Ici, forme indéterminée, car lim (-1/4)*ln(x) = - infini lorsque x tend vers + infini, et lim x = + infini, on aurait : infini - infini. Il va falloir factoriser astucieusement par ln(x) :
4 - (1/4)*ln(x) - x = ln(x) * [ (4/ln(x)) - (1/4) - (x / ln(x)].
lim 4 / ln(x) = 0 en + infini par quotient, néanmoins, il reste une forme indéterminée : infini / infini pour x / ln(x). L'astuce ici, c'est d'utiliser la croissance comparée. En analysant les courbes de x et ln(x), x va croître beaucoup plus vite que ln(x), donc x / ln(x) tend vers + infini en + infini (ça se démontre, mais c'est assez difficile).
Finalement : 4 / ln(x) - (1/4) - (x/ln(x)) tend vers - infini en + infini, donc par produit, ton expression tend vers -infini * infini = - infini.
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.