Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour, est-ce-que vous pouvez m’ aider sur cet exercice (de DM) Svp :

 f est la fonction définie sur [0;+infini [ par : f(x) = x au carré + x.

 On se propose d’étudier les variations de f.

 1 .Conjecture

 a)Utiliser la calculatrice graphique pour conjecturer le sens de variation de f.

 b)Pourquoi l’observation de l’écran de la calculatrice ne suffit pas pour être certain du sens de la variation sur [0 ;+ infini[ ?

 2 .Preuve u et v désignent deux réels de [0;+infini [.

• Quel est le signe de chacun des réels u et v ?

• Vérifier que f(u)-f(v) = (u-v)(u+v+1).

 • Déduire de a), le signe de u+v+1.

• On suppose que u < ou égal à v. Que peut-on dire alors du signe de f(u)-f(v) ?

 • Conclure pour le sens de variation de f. Merci beaucoup !



Sagot :

u et v désignent deux réels de [0;+infini [.

• Quel est le signe de chacun des réels u et v ? positifs tous les 2

• Vérifier que f(u)-f(v) = (u-v)(u+v+1).

(u^2+u)-(v^2+v)=u^2-v^2+(u-v)=(u-v)(u+v)+(u-v) et (u-v) en facteur

 • Déduire de a), le signe de u+v+1. positif

• On suppose que u < ou égal à v. Que peut-on dire alors du signe de f(u)-f(v) ?

u-v est <=0 donc f(u)-f(v) lui aussi est <=0

 • Conclure pour le sens de variation de f.

si 0<u<v alors f(u)<f(v) : la fonction est croissante sur 0, +inf

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.