Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, est-ce-que vous pouvez m’ aider sur cet exercice (de DM) Svp :

 f est la fonction définie sur [0;+infini [ par : f(x) = x au carré + x.

 On se propose d’étudier les variations de f.

 1 .Conjecture

 a)Utiliser la calculatrice graphique pour conjecturer le sens de variation de f.

 b)Pourquoi l’observation de l’écran de la calculatrice ne suffit pas pour être certain du sens de la variation sur [0 ;+ infini[ ?

 2 .Preuve u et v désignent deux réels de [0;+infini [.

• Quel est le signe de chacun des réels u et v ?

• Vérifier que f(u)-f(v) = (u-v)(u+v+1).

 • Déduire de a), le signe de u+v+1.

• On suppose que u < ou égal à v. Que peut-on dire alors du signe de f(u)-f(v) ?

 • Conclure pour le sens de variation de f. Merci beaucoup !



Sagot :

u et v désignent deux réels de [0;+infini [.

• Quel est le signe de chacun des réels u et v ? positifs tous les 2

• Vérifier que f(u)-f(v) = (u-v)(u+v+1).

(u^2+u)-(v^2+v)=u^2-v^2+(u-v)=(u-v)(u+v)+(u-v) et (u-v) en facteur

 • Déduire de a), le signe de u+v+1. positif

• On suppose que u < ou égal à v. Que peut-on dire alors du signe de f(u)-f(v) ?

u-v est <=0 donc f(u)-f(v) lui aussi est <=0

 • Conclure pour le sens de variation de f.

si 0<u<v alors f(u)<f(v) : la fonction est croissante sur 0, +inf

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.