Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Réponse:
On utilise cos²x + sin²x = 1
[tex] {cos}^{2} ( \frac{7\pi}{12} ) = 1 - {sin}^{2} ( \frac{7\pi}{12} ) [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = 1 - \frac{ {( \sqrt{2} + \sqrt{6}) }^{2} }{ {4}^{2} } [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = 1 - \frac{ {(2 + 2 \times \sqrt{2} \times \sqrt{6} + 6) }}{ 16 } [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(16 - 8 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(8 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {(2 + 6 - 2 \times \sqrt{2} \times \sqrt{6}) }}{16 } [/tex]
[tex]{cos}^{2} ( \frac{7\pi}{12} ) = \frac{ {( \sqrt{2} - \sqrt{6}) }^{2} }{ {4}^{2} } [/tex]
2.
[tex] \frac{7\pi}{12} \geqslant \frac{\pi}{2} [/tex]
donc son cosinus est negatif.
[tex]{cos}( \frac{7\pi}{12} ) = - \sqrt{ \frac{ {( \sqrt{2} - \sqrt{6}) ^{2} }}{ 4^{2}} }[/tex]
[tex]{cos}( \frac{7\pi}{12} ) = - \frac{ {( \sqrt{2} - \sqrt{6}) }}{ 4} [/tex]
[tex]{cos}( \frac{7\pi}{12} ) = \frac{ {\sqrt{6} - \sqrt{2}}}{ 4} [/tex]
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.