Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Réponse :
Bonsoir
[tex]e^{4x-16 \leq \frac{1}{e}[/tex]
⇔ [tex]e^{4x-16} \leq e^{-1}[/tex]
⇔ 4x - 16 ≤ -1
⇔ 4x ≤ 15
⇔ x ≤ 15/4
S = ]-∞ ; 15/4]
Réponse:
Bonsoir
Explications étape par étape:
Soit l'équation E : exp(4x-16) =< 1/e
Pour tout x appartenant à R, exp(4x-16) est strictement positif donc on peut composer par ln et on a :
4x-16 =< ln(1/e) = ln(exp(-1))
4x-16 =< -1
4x =< 15
x =< 15/4 = 3.75
S = ]-infini, 3.75]
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.