Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

On considère la fonction f(x) = e^x - x + 1 définie et dérivable sur IR
1) Déterminer une expression de la dérivée de f.
2) Dresser le tableau de signes de f'(x) sur IR
3) En déduire le tableau de variations de f sur IR.
4) Déterminer une équation de la tangente à la courbe représentative de f au point d'abscisse 0


Sagot :

Salut,

1) f'(x) = e^x - 1

2) f'(x) > 0

e^x - 1 > 0

e^x > 1

ln(e^x) > ln(1)

x > 0

Donc f'(x) s'annule en x = 0

x | -infini 0 +infini

Signe - 0 +

de f'(x)

3) tableau de signe <== tu le déduis avec ce qu'on a fait en haut.

4) L'équation d'une tangente, c'est

y = f'(a) (x - a) + f(a)

y = f'(0) (x-0) + f(0)

f'(0) = e^0 - 1 = 1 - 1 = 0

f(0) = e^0 - 0 + 1 = 1 - 0 + 1 = 2

Donc

T0 = 2

J'espère t'avoir aidé !

Dreamus

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.