Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour, s'il vous plait j'ai besoin d'aide, merci !

Une variable X suit une loi exponentielle de paramètre k = 0,5 .
1. Étudier la fonction densité de cette variable. Représenter la graphiquement. Indiquer
comment lire graphiquement la valeur du paramètre.
2. Démontrer que l’espérance et l’écart type d’une variable aléatoire à densité exponentielle sont égaux à 1/k
En déduire les valeurs de l’espérance et de l’écart type de X.
3. Calculer la probabilité que X soit comprise entre 1,5 et 2,5
4. Quelle est la probabilité que X dépasse 2, sachant qu’elle a dépassé 1,5.


Sagot :

Réponse :

Bonjour

1) La fonction densité de la variable X est la fonction f définie sur [0 ; +∞[ telle que f(x) = 0,5[tex]e^{-0,5x}[/tex]

f'(x) = -0,25[tex]e^{-0.5x}[/tex] donc f'(x) < 0. Donc f(x) est décroissante sur [0 ; +∞[

voir représentation graphique en pièce jointe

Pour lire graphiquement la valeur du paramètre, on lit l'ordonnée du point d'intersection de la courbe de f et de l'axe des ordonnées.

2) voir démonstration en pièce jointe

E(x) = σ(X) = 1/0,5 = 2

3) p(1,5 ≤ X ≤2,5) = p(X ≤ 2,5) - p(X ≤ 1,5) = 1 - [tex]e^{-0,5*2,5}[/tex] - (1 - [tex]e^{-0,5*1,5}[/tex])

                            = -[tex]e^{-1.25}[/tex] + [tex]e^{-0.75}[/tex] ≈ 0,18586

4) p(X ≥ 2) sachant que X ≥ 1,5 = p(X ≥ 1,5 + 0,5) sachant que X ≥ 1,5

  = p(X ≥ 0,5) = [tex]e^{-0.5*0.5}[/tex] = [tex]e^{-0.25}[/tex] ≈ 0,7788

View image ecto220
View image ecto220
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.