Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
Bonjour , je n'arrive pas à comprendre l'énoncé de mon devoir maison puis je ne comprend pas les question a , b , c et d . Je ne sais pas quel calcul faire ni comment démontrer .
Pourriez-vous m'aider s'il vous plaît?
Voici l'énoncé : Un capital Co est emprunté à une banque à un taux mensuel fixe t . Ce capital est remboursé chaque mois (sur une durée de k mois) par une mensualité M constante qui se décompose en deux parts : les intérêts dus pendant le mois écoulé et la somme consacrée au remboursement du capital restant à rembourser.
n étant un entier naturel non nul , on note :
Cn le capital restant à rembourser après n mois;
In , les intérêts payés à la fin du nième mois :In = t fois Cn-1 (relation 1)
Rn la somme consacrée au remboursement
du capital à la fin du nième mois : Rn= Cn-1-Cn (relation 2)
1) Recherche d'une formule pour calculer M
a) La mensualité constante M vérifie M= In + Rn = In + 1 + Rn +1.
In = t fois Cn-1 (relation 1) d'où
t Cn-1 + Rn =t Cn + Rn +1.
DONC Rn+1 =Rn+ t Cn- 1 - tCn
Rn+1 =Rn+ t (Cn-1-Cn)
b)Rn= Cn-1-Cn (relation 2)
donc Rn+1 = Cn-1-Cn + t (Cn-1-Cn) = (1+t)(Cn-1-Cn) =(1+t)Rn
ceci prouve que la suite (Rn) est géométrique de raison (1+t) et de premier terme R1.
c) à l'issue de k mois , le capital emprunté est entièrement remboursé .
La somme de tous les remboursements est donc égal au capital Co:
Co = R1+R2+...+Rk = R1+R1(1+t) +R1(1+t)²+...+R1(1+t)^(k-1) =
R1 ( 1 + (1+t) + (1+t)²+...+(1+t)^(k-1) ) = R1 ( 1 - (1+t)^k) ) / ( 1 -(1+t) )
= R1 ( 1 - (1+t)^k) ) / ( -t ) = R1 ( -1 + (1+t)^k) ) / t
Co = R1 ( (1+t) ^k -1) / t.
d) Co = R1 ( (1+t) ^k -1) / t. donc tCo = R1 ( (1+t) ^k -1)
R1 = tCo / ( (1+t) ^k -1)
M = I1 +R1 = tCo + R1 = tCo + tCo / ( (1+t) ^k -1)
= tCo ( 1 + 1 / ( (1+t) ^k -1) ) = t Co ( (1+t)^k - 1 +1 ) / ( (1+t) ^ k -1)
= t Co ( (1+t)^k ) / ( (1+t) ^ k -1)
Explications étape par étape
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.