Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour, pouvez vous m'aider s'il vous plait a ce exercice. Merci énormément :)

Bonjour Pouvez Vous Maider Sil Vous Plait A Ce Exercice Merci Énormément class=

Sagot :

Réponse :

Bonjour

1) a) h(x) = f(x)f(-x)

⇔ h'(x) = f'(x)f(-x) + f(x)f'(-x)

⇔ h'(x) = f'(x)f(-x) + f(x)(-f'(-x))

⇔ h'(x) = f'(x)f(-x) - f(x)f'(-x)

⇔ h'(x) = f(x)f(-x) - f(x)f(-x)

⇔ h'(x) = 0

b) h'(x) = 0 , h est donc constante sur R

c) on a h(0) = f(0)f(0) = 1 et h est constante donc h(x) = 1

f(x)f(-x) = 1 donc f ne peut pas s'annuler

2) a) f(x) ne s'annule pas,donc k(x) = g(x)/f(x) est définie et dérivable sur R comme quotient de 2 fonctions dérivables

    b) k'(x) = [g'(x)f(x) - g(x)(f'(x)]/(f(x))²

⇔ k'(x) = [g(x)f(x) - g(x)f(x)]/(f(x))² = 0

   c) k'(x) = 0 donc k est constante sur R

   d) On a donc k(0) = g(0)/f(0) = 1

donc quelque soit x ∈ R , k(x) = 1 ⇔ g(x) = f(x)

Il n'existe donc qu'une et unique fonction f telle que f'(x) = f(x) et f(0) = 1

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.