Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Réponse : Bonjour,
1) On a:
[tex]\displaystyle P([0;4])=\int_{0}^{4} \lambda e^{- \lambda t} \; dt=\lambda \int_{0}^{4} e^{- \lambda t} \; dt=\lambda \left[\frac{e^{- \lambda t}}{-\lambda}\right]_{0}^{4}=\lambda \left(\frac{e^{-4 \lambda}}{-\lambda}+\frac{e^{0}}{\lambda}\right)=-e^{-4 \lambda}+1[/tex]
Donc:
[tex]\displaystyle P([0;4])=\frac{e^{2}-1}{e^{2}}\\1-e^{-4 \lambda}=\frac{e^{2}-1}{e^{2}}\\e^{-4 \lambda}=1-\frac{e^{2}-1}{e^{2}}=\frac{e^{2}-e^{2}+1}{e^{2}}=\frac{1}{e^{2}}\\e^{-4 \lambda}=e^{-2}\\-4 \lambda=-2\\\lambda=\frac{-2}{-4}=\frac{1}{2}[/tex]
Donc [tex]\displaystyle \lambda=\frac{1}{2}[/tex]
2) On a:
[tex]\displaystyle P([1;+\infty[)=\int_{1}^{+\infty} \frac{1}{2}e^{-\frac{1}{2}t} \; dt=\frac{1}{2} \int_{1}^{+ \infty} e^{-\frac{1}{2}t} \; dt=\frac{1}{2}\left[\frac{e^{-\frac{1}{2}t}}{-\frac{1}{2}}\right]_{1}^{+\infty}=\frac{1}{2}\left[-2e^{-\frac{1}{2}t}\right]_{1}^{+\infty}\\=\frac{1}{2}\left(\lim_{t \mapsto +\infty} -2e^{-\frac{1}{2}t}+2e^{-\frac{1}{2}}\right)=\frac{1}{2}(0+2e^{-\frac{1}{2}})=e^{-\frac{1}{2}}[/tex]
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.