Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Quelqu'un doué en maths peut m'aider ????????? Personne n'arrive à l'exercice 4 si t'es doué ( niveau lycée ) j'aimerai de l'aide pour ces exercices, "Les maths et moi on a une relation compliqué donc si un mediateur pouvait arrangé cela en m'aidant"
(pas très long mais je t’avoue que je bloque depuis heure...) Si tu peux m'aider sache que je t'en serai reconnaissante :) Je comprends rien



MERCI D'AVANCE ! Je dois rendre cela Lundi 4 mai ...

Quelquun Doué En Maths Peut Maider Personne Narrive À Lexercice 4 Si Tes Doué Niveau Lycée Jaimerai De Laide Pour Ces Exercices Les Maths Et Moi On A Une Relati class=
Quelquun Doué En Maths Peut Maider Personne Narrive À Lexercice 4 Si Tes Doué Niveau Lycée Jaimerai De Laide Pour Ces Exercices Les Maths Et Moi On A Une Relati class=

Sagot :

Réponse :

Exercice 4 :

On sait que vitesse [m/s] = distance [m] / temps [s]

1) On extrait les données du problème :

on pose D la distance de freinage mesurée, soit D = 148,5m

2) on résoud :

On utilise la formule permettant de convertir la distance de freinage en la vitesse auquel le conducteur roulé : on a donc 148,5 = v/5 + v²/150

Ce qui revient à résoudre v/5 + v²/150 - 148,5 = 0

Or d'après l'énoncé on nous donne la factoriation de l'équation à résoudre

x/5 + x²/150 - 148,5 = (x - 135) * ((x+165)/150)

Soit Résoudre (v - 135) * ((v+165)/150) = 0

Or un produit = 0 si un des termes de ce produit est égale à 0

Soit v₁-135 = 0 , Soit ((v₂+165)/150) = 0

Soit v₁ = 135 km/h  , Soit v₂ = -165 km/h

Or on ne peut rouler à -165km/h (une vitesse est positive)

Donc le chauffeur à rouler à 135 km/h

D'après le code de la route sur route sèche, la limite max autorisée et 130 km/h. On en déduit que le chauffeur est en infraction de 5km/h

Explications étape par étape

Si on avait pas eu la factorisation fournie par l'énoncé, on aurait du faire

148,5 = v/5 + v²/150 = (30v + v²)/150

Soit 30 v + v² = 148,5 * 150 = 22275

ce qui revient à résoudre l'équation v² + 30 v -22275 = 0

Soit une Equation du 2nd degré

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.