Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Quelqu'un doué en maths peut m'aider ????????? Personne n'arrive à l'exercice 4 si t'es doué ( niveau lycée ) j'aimerai de l'aide pour ces exercices, "Les maths et moi on a une relation compliqué donc si un mediateur pouvait arrangé cela en m'aidant"
(pas très long mais je t’avoue que je bloque depuis heure...) Si tu peux m'aider sache que je t'en serai reconnaissante :) Je comprends rien



MERCI D'AVANCE ! Je dois rendre cela Lundi 4 mai ...

Quelquun Doué En Maths Peut Maider Personne Narrive À Lexercice 4 Si Tes Doué Niveau Lycée Jaimerai De Laide Pour Ces Exercices Les Maths Et Moi On A Une Relati class=
Quelquun Doué En Maths Peut Maider Personne Narrive À Lexercice 4 Si Tes Doué Niveau Lycée Jaimerai De Laide Pour Ces Exercices Les Maths Et Moi On A Une Relati class=

Sagot :

Réponse :

Exercice 4 :

On sait que vitesse [m/s] = distance [m] / temps [s]

1) On extrait les données du problème :

on pose D la distance de freinage mesurée, soit D = 148,5m

2) on résoud :

On utilise la formule permettant de convertir la distance de freinage en la vitesse auquel le conducteur roulé : on a donc 148,5 = v/5 + v²/150

Ce qui revient à résoudre v/5 + v²/150 - 148,5 = 0

Or d'après l'énoncé on nous donne la factoriation de l'équation à résoudre

x/5 + x²/150 - 148,5 = (x - 135) * ((x+165)/150)

Soit Résoudre (v - 135) * ((v+165)/150) = 0

Or un produit = 0 si un des termes de ce produit est égale à 0

Soit v₁-135 = 0 , Soit ((v₂+165)/150) = 0

Soit v₁ = 135 km/h  , Soit v₂ = -165 km/h

Or on ne peut rouler à -165km/h (une vitesse est positive)

Donc le chauffeur à rouler à 135 km/h

D'après le code de la route sur route sèche, la limite max autorisée et 130 km/h. On en déduit que le chauffeur est en infraction de 5km/h

Explications étape par étape

Si on avait pas eu la factorisation fournie par l'énoncé, on aurait du faire

148,5 = v/5 + v²/150 = (30v + v²)/150

Soit 30 v + v² = 148,5 * 150 = 22275

ce qui revient à résoudre l'équation v² + 30 v -22275 = 0

Soit une Equation du 2nd degré

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.