Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, je bloque sur l’exercice cinq de mon Dm de maths niveau première, j’espere Que quelqu’un peut me depanner!!

Bonjour Je Bloque Sur Lexercice Cinq De Mon Dm De Maths Niveau Première Jespere Que Quelquun Peut Me Depanner class=

Sagot :

Réponse :

Bonjour

Ex5

Explications étape par étape

f(x)=(ax+b)e^x

1) f(0)=-1 donc (a*0+b)e^0=-1   soit b*(1)=-1     b=-1

2)f'(0)=1 car c'est le ceof.directeur de la tangente au point x=0

Dérivée  f(x) est de la forme u*v sa dérivée est donc f'(x)=u'v+v'u avec

u=ax+b     u'=a  et v=e^x    v'=e^x

f'(x)=a*e^x +(ax+b)e^x=(ax+a+b)e^x

f'(0)=1 ce qui donne (a-1)*(1)=1  donc a=2

on en déduit f(x)=(2x-1)e^x

3) Etude de f(x)  sur R

limites si x tend vers -oo f(x) tend vers -oo*(0+)=0-

si x tend vers +oo f(x) tend vers +oo

 dérivée f'(x)=2e^x+(e^x)(2x-1)= (2x-1)e^x

cette dérivée s'annule pour x=-1/2

tableau de signes de f'(x) et de variations de f(x)

x    -oo                              -1/2                             +oo

f'(x)...................-........................0.................+.................

f(x)0-..........décroi...............f(-1/2)..........croi ............+oo

f(-1/2)=(-1-1)e^(-1/2)= -2/rac e    = - 1,2(environ)