Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
Bonjour/bonsoir, désolé pour cette réponse tardive, j'espère au moins que cela t'aidera. On rappelle que pour calculer la distance par rapport à trois coordonnées, l'on procède de la même façon que pour le calcul dans un plan à trois coordonnées, avec la formule:
[tex]AB = \sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}[/tex]
Explications étape par étape
1. a- Calculer la distance AC
Pour ce faire, nous pouvons procéder selon deux méthodes:
- En utilisant la propriété de Pythagore
Dans le triangle ABC rectangle en B, nous avons: AC² = AB² + BC = 136
Ainsi, on obtient la distance [tex]AC = \sqrt{136} = 11,66\ cm[/tex]
- En utilisant la formule de la distance
[tex]AC = \sqrt{(x_C-x_A)^2+(y_C-y_A)^2+(z_C-z_A)^2}\\= \sqrt{(10-0)^2+(6-0)^2+(0)^2}\\= \sqrt{100+36} = 11,66\ cm[/tex]
b- Le triangle ACG est un triangle rectangle en C. Nous pouvons donc une fois de plus appliquer la propriété de Pythagore:
AG² = AC² + CG² = 136 + 4² = 150 => [tex]AG = \sqrt{150} = 12,247\ cm[/tex]
2. On considère les différents points I(5,3,2) ; J(4,4,2) et L(4,5,1)
a- Déterminons le point le plus éloigné de A
[tex]AI = \sqrt{(x_I-x_A)^2+(y_I-y_A)^2+(z_I-z_A)^2}\\= \sqrt{(5-0)^2+(3-0)^2+(2-0)^2}\\= \sqrt{25+9+4} = \sqrt{38} =6,16\ cm\\\\AJ = \sqrt{(x_J-x_A)^2+(y_J-y_A)^2+(z_J-z_A)^2}\\= \sqrt{(4-0)^2+(4-0)^2+(2-0)^2}\\= \sqrt{16+16+4} = \sqrt{36} =6\ cm\\\\AK = \sqrt{(x_K-x_A)^2+(y_K-y_A)^2+(z_K-z_A)^2}\\= \sqrt{(4-0)^2+(5-0)^2+(2-0)^2}\\= \sqrt{16+25+4} = \sqrt{45} =6,70\ cm[/tex]
On constate donc que le point le plus éloigné est le point K.
b- Le centre A du pavé droit se trouve à mi distance sur tous les trois axes, dis nous en commentaire le valeurs que tu trouves.
Pour en savoir plus sur la géométrie de l'espace..https://nosdevoirs.fr/devoir/2185318
#Nosdevoirs
#leaenwithBrainly
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.