Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse :
Bonsoir/ bonjour, dans l'exercice qui nous est soumis, l'univers des évènements possibles sera constitués des différents couples formés lors des tirages par les différens numéros.
Explications étape par étape
1) Sur la figure ci jointe qui représente l'arbre, nous pouvons constater que l'univers se rapporte juste à un produit cartésien des deux ensembles de jetons des urnes A et B.
2) D'après la question 1), nous pouvons déduire que le cardinal de l'univers sera: [tex]Card\ \Omega = Card\ A * Card\ B= 5*4 = 20[/tex]
Par suite, l'événement considéré ici A correspond au couple résultat (1,1) et donc sa probabilité est donc:
[tex]P_{A} = \frac{Card_A}{Card_{\Omega} }= \frac{1}{20} = 0.05[/tex]
3) Calculer les probabiltés suivantes:
a- B : "Obtenir deux jetons ayant le même numéro"
Les seuls couples résultats possibles sont: (1,1) et (5,5) soit une probabilité de:
[tex]P_{B} = \frac{Card_B}{Card_{\Omega} }= \frac{2}{20} = 0.1[/tex]
b- C : "Obtenir deux jetons ayant des numéros impairs"
Les seuls couples résultats possibles sont: (1,1), (1,3), (1,5), (5,1), (5,3) et (5,5) soit une probabilité de:
[tex]P_{C} = \frac{Card_C}{Card_{\Omega} }= \frac{6}{20} = 0.3[/tex]
Pour aller plus loin sur les probabilités.. https://nosdevoirs.fr/devoir/2557508
#Nosdevoirs
#learnwithBrainly
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.