Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, j'ai des exo a faire pour demain matin 8h mais je n'y arrive vraiment pas.

• Exercice 1

Un récipient contient 1.2L d’eau à 17°C. Quelle quantité de chaleur faut-il pour élever sa température à 367K ?
On donne Ceau=4180JKg-1°C-1


• Exercice 2

Calculer l’allongement d’une tige de cuivre de longueur 2m à 0°C, à la température de 60°C.

On donne a=16 x 10-6°C-1

En chauffant de la même façon une tige de fer, l’allongement mesuré est 1,89mm. Déterminer le coefficient de dilatation linéique du fer.

On obtient le même allongement que la tige de cuivre avec du zinc dont le coefficient de dilatation linéique est a=6.4 x 10-6°C-1. A quelle température est portée la tige de zinc?



• Exercice 3

Un calorimètre contient 1,4Kg d’eau à 11°C. On ajoute 200g d’eau à 355K. On appelle 0 la température d’équilibre.

Exprimer Q1 la quantité de chaleur cédée par l’eau chaude.
Exprimer Q2 la quantité de chaleur reçue par l’eau froide.
En déduire 0.

Merci d'avance de votre aide

Sagot :

Bonjour,

Ex 1)

V = 1,2 L ⇒ m = 1,2 kg

θi = 17°C et θf = 367°K = 93,85°C

Q = m x c(eau) x (θf - θi) = 1,2 x 4180 x (93,85 - 17) ≈ 385 470 J

Ex 2)

1) ΔL = α(Cu) x L₀ x ΔT = 16.10⁻⁶ x 2 x (60 - 0) = 1,92.10⁻³ m ≈  2 mm

2) α(Fe) = ΔL/(ΔT x L₀)  pour L₀ = 2 m

soit : α(Fe) = 1,89.10⁻³/60x2 ≈ 15,75.10⁻⁶ °C⁻¹

3) ΔT = ΔL/(α(Zn) x L₀)   avec ΔL = 1,92.10⁻³ m et α(Zn) = 6,4.10⁻⁶ °C⁻¹

soit : ΔT = 1,92.10⁻³/(6,4.10⁻⁶ x 2) = 150 °C

Partant de 0°C, la tige de zinc est donc portée à 150°C.

Ex 3) 355 °K = 81,85 °C

Q₁ = 0,200 x 4180 x (θ - 81,85)

Q₂ = 1,400 x 4180 x (θ - 11)

Q₁ + Q₂ = 0 (on suppose qu'il n'y a pas de pertes)

⇒ 0,200 x 4180 x (θ - 81,85) + 1,400 x 4180 x (θ - 11) = 0

⇔ 836 x (θ - 81,85) + 5852 x (θ - 11) = 0

⇔ -68426,6 + 836θ + 5852θ - 64372 = 0

⇔ -132798,6 + 6688θ = 0

θ = 132798,6/6688 = 19,85 °C