Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Alors déja ton équation est fausse. Les deux demi équations mises en jeux sont:
-[tex]I_{2}/I^-[/tex] sa demi équation est: [tex]I_{2} + 2e^-=2I^-[/tex]
-[tex]2S_2O_3^{2-}=S_4O_6^{2-}+2e^-[/tex][tex]2S_2O_3^{2-}=S_4O_6^{2-}+2e^-[/tex]
[tex]S_4O_6^{2-}/S_2O_3^{2-}[/tex] et sa demi equation est: [tex]2S_2O_3^{2-}=S_4O_6^{2-}+2e^-[/tex]
L'équation finale donne [tex]I_2+2S_2O_3^{2-}=2I^-+S_4O_6^{2-}[/tex]
L'équivalence est repéré lorsque la première goutte en exces du réactif titrant(celui dans la burette) est versé ce qui change nettement la coloration de la solution.
A ce moment la, la quantité de matière versée est égal à la quantité de matière présente initialement. Donc: [tex]n_{I2}=\frac{n_{S_2O_3^{2-}}}2[/tex] (le/2 correspond au coefficient de S2O3^2-
Pour calculer la quantité de matière cela dépend des données de l'exercice. En tout cas tu vas avoir normalement besoin de [tex]c= \frac{n}{v}[/tex]
et donc tu sais que [tex]n=c \times v[/tex]
cela devrais t'aider
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.