Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour, voici des exercices niveau première maths spé mais je ne comprends par car c'est un nouveau chapitre et la leçon n'est pas clair. Merci beaucoup pour votre aide.

Bonjour Voici Des Exercices Niveau Première Maths Spé Mais Je Ne Comprends Par Car Cest Un Nouveau Chapitre Et La Leçon Nest Pas Clair Merci Beaucoup Pour Votre class=

Sagot :

Réponse: Bonjour,

Exercice 15

a) [tex](x-2)^{2}+(y+3)^{2}=5[/tex] est par définition l'équation du cercle de centre [tex]\Omega(2;-3)[/tex], et de rayon [tex]\sqrt{5}[/tex].

b) On a:

[tex]x^{2}+y^{2}+6y+5=0\\(x-0)^{2}+(y+3)^{2}-9+5=0\\(x-0)^{2}+(y+3)^{2}=4[/tex]

Donc c'est l'équation du cercle de centre [tex]\Omega(0;-3)[/tex] et de rayon 2.

c) On a:

[tex]\displaystyle x^{2}+y^{2}+4x-5y+30=0\\(x+2)^{2}-4+\left(y-\frac{5}{2}\right)^{2}-\frac{25}{4}+30=0\\ (x+2)^{2}+\left(y-\frac{5}{2}\right)^{2}+\frac{-16-25+120}{4}=0\\ (x+2)^{2}+\left(y-\frac{5}{2}\right)^{2}=-\frac{79}{4}[/tex]

Comme le membre de gauche est négatif, ce n'est pas l'équation d'un cercle.

De plus, on remarque que le membre de gauche est la somme de deux carrés, donc la somme est positive, et le membre de droite est négatif.

ll n'existe donc pas de points M(x;y), vérifiant l'équation.

Donc cet ensemble est l'ensemble vide.

d) On a:

[tex]\displaystyle x^{2}+y^{2}+3x+2y+4=0\\\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+(y+1)^{2}-1+4=0\\ \left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}+\frac{-9-4+16}{4}=0\\ \left(x+\frac{3}{2}\right)^{2}+(y+1)^{2}=-\frac{3}{4}[/tex]

Pour la même raison, que la question c), il n'existe aucun point M(x;y), vérifiant la dernière équation précédente, donc l'ensemble est l'ensemble vide.

e) On a:

[tex]x^{2}+y^{2}+6x+2y+10=0\\(x+3)^{2}-9+(y+1)^{2}-1+10=0\\(x+3)^{2}+(y+1)^{2}=0[/tex]

C'est donc l'équation du cercle de centre [tex]\Omega(-3;-1)[/tex], et de rayon 0, donc seul le centre [tex]\Omega[/tex], appartient à l'ensemble.

f) On a:

[tex]\displaystyle 2x^{2}-5x+2y^{2}+6y=1\\ 2\left(x^{2}+y^{2}-\frac{5}{2}x+3y\right)=1\\ \left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}+\left(y+\frac{3}{2}\right)^{2}-\frac{9}{4} =\frac{1}{2}\\ \left(x-\frac{5}{4}\right)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{25+36+8}{16}\\ \left(x-\frac{5}{4}\right)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{69}{16}[/tex]

C'est donc l'équation du cercle de centre [tex]\displaystyle \Omega\left(\frac{5}{4};-\frac{3}{2}\right)[/tex] et de rayon [tex]\displaystyle \frac{\sqrt{69}}{4}[/tex].

Exercice 16

On a:

[tex]x^{2}+y^{2}-4x+8y+m=0\\(x-2)^{2}-4+(y+4)^{2}-16+m=0\\(x-2)^{2}+(y+4)^{2}=20-m[/tex]

Le membre de droite doit être strictement positif:

[tex]20-m > 0\\m < 20[/tex]

Donc pour [tex]m < 20[/tex], c'est l'équation d'un cercle de centre [tex]\Omega(2;-4)[/tex].

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.