Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, besoin d'aide, merci :

Une brique de 1,0kg est chauffée dans le foyer d'une cheminée à la température T1 = 90°C.
La brique est immergée dans une bassine contenant 5,0L d'eau à la température ambiante T2 = 20°C.
Au bout de quelques minutes, la température du système : eau + brique se stabilise et atteint la valeur T3 (on n'a
pas oublié d'agiter l'eau pour homogénéiser la température).
On suppose que les échanges énergétiques n'ont lieu qu'entre l'eau et la brique.
 Capacité thermique massique de :
L'eau : c(eau) = 4,18×103 J.kg–1.K–1
De la brique : c(brique) = 8,40×102 J.kg–1.K–1
 Masse volumique de l'eau : ρ = 1,0 kg.L–1.
 T(°K) = 273+T(°C)
1- Donner l'expression de l'énergie thermique Q transférée entre la brique et l'eau. Quel est le signe de cette
chaleur, justifier.
2- Donner l'expression de l'énergie thermique Q' transférée entre l'eau et la brique. Quel est le signe de cette
chaleur, justifier.
3- En supposant que les échanges énergétiques n'ont lieu qu'entre l'eau et la brique, quelle relation peut-on
écrire entre Q et Q' ?
4- Déterminer la température finale T3 de l'ensemble.
5- En réalité la mesure de T3 donne 21,5°C. Que s'est-il passé ?


Sagot :

Bonjour,

1) Q = m(brique) x c(brique) x (T3 - T1)

Q < 0 car T3 < T1  (La brique cède de l'énergie)

2) Q' = m(eau) x c(eau) x (T3 - T2)

Q' > 0 car T3 > T2 (L'eau absorbe de l'énergie)

3) Q + Q' = 0

4) m(brique) x c(brique) x (T3 - T1) + m(eau) x c(eau) x (T3 - T2) = 0

⇔ [m(brique) x c(brique) + m(eau) x c(eau)] x T3 = m(brique) x c(brique) x T1 + m(eau) x c(eau) x T2

⇔ T3 = [m(brique) x c(brique) x T1 + m(eau) x c(eau) x T2]/[m(brique) x c(brique) + m(eau) x c(eau)]

Soit : T3 = (1,0 x 8,40.10² x 90 + 5,0 x 4,18.10³ x 20)/(1,0 x 8,40.10² + 5,0 x 4,18.10³) ≈ 22,7 °C

5) Pertes donc il y a eu des échanges entre le système "brique + eau" et le milieu extérieur "bassine + air".

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.