Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour.
Pouvez-vous m’aider svp?
Merci d’avance
Il y a une pièce jointe


Bonjour Pouvezvous Maider Svp Merci Davance Il Y A Une Pièce Jointe class=

Sagot :

Réponse :

Explications étape par étape

On note les événements : p =« l’oeuf est petit », m =« l’oeuf est moyen », g =« l’oeuf est gros » et t =« l’oeuf est très gros ».

La masse peut être modélisée par la variable aléatoire X telle que X → N (60; σ2).

1. On a, par définition de l’évènement complémentaire :

P(p ̄)=P(X ≥53)=1−P(X ≤53)=1−0,16=0,84

L’oeuf ne sera donc pas classé dans la catégorie « Petit » avec une probabilité P(p ̄) = 0, 84.

2. On sait, l’espérance valant 60, que P(X ≤ 60) = P(X ≥ 60) = 0, 5. Aussi, on aura P(X ≤53)+P(53≤X ≤60)=0,5 =⇒ P(53≤X ≤60)=0,5−P(X ≤53)

D’où, P(53 ≤ X ≤ 60) = 0, 5 − 0, 16= 0, 34.

3. On en déduit alors que

P(m)=P(53≤X ≤63)=P(53≤X ≤60)+P(60≤X ≤63)=0,34+0,17=0,51 Un oeuf sera donc classé dans la catégorie « Moyen » avec une probabilité P(m) = 0, 51.

4. De même que précédemment, on sait que P(X ≥ 60) = 0, 5. Aussi, on obtient que : P(t) = P(X ≥ 73) = 0,5−P(60 ≤ X ≤ 63)−P(63 ≤ X ≤ 73) = 0,5−0,3−0,17 = 0,03 La probabilité qu’un oeuf soit classé dans la catégorie « Très gros » vaut donc P(t) = 0, 03.

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.