Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, besoin de l’aide d’une personne pour résoudre cet exercice s’il vous plaît. Je n’y comprends rien. Merci d’avance.

Bonjour Besoin De Laide Dune Personne Pour Résoudre Cet Exercice Sil Vous Plaît Je Ny Comprends Rien Merci Davance class=

Sagot :

Réponse :

EX4

on considère le repère (A; B ; D)

1) justifier que ce repère est orthonormé

      (AB) ⊥ (AD)  et ||vec(AB)|| = ||vec(AD)||

car ABCD est un carré

2) déterminer les coordonnées de I , J et C

I(1/4 ; 1/4)

J(1/2 ; 0)

C(1 ; 1)

3) calculer les longueurs IJ ; IC et JC

   IJ² = (1/2 - 1/4)²+ (0 - 1/4)² = (1/4)² + (-1/4)² = 1/8

  IC² = (1 - 1/4)² + (1 - 1/4)² = (3/4)² + (3/4)² = 9/8

  JC² = (1 - 1/2)²+ (1 - 0)² = 1/4 + 1 = 5/4

d'après la réciproque du th.Pythagore  on a, IJ²+IC² = 1/8 + 9/8 = 10/8 = 5/4 = IC² = 5/4

Donc d'après la réciproque du th.Pythagore le triangle IJC est rectangle en I

4) peut-on affirmer que l'aire du triangle IJC est supérieure à la moitié de celle du carré ABCD ? Justifier

        A(ijc) > 1/2) x A(abcd)  or  A(abcd) = 1

        A(ijc) > 1/2 ?

IJ = √(1/8) = 1/2√2 = √2/4

IC = √(9/8) = 3/√8 = 3/2√2 = 3√2/4

A(ijc) = 1/2( √2/4 x 3√2/4) = 3/16

   On a; 3/16 < 8/16  donc l'affirmation n'est pas vraie  

Explications étape par étape

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.