Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Explications étape par étape:
Salut, il s'agit d'une récurrence classique, le plus difficile étant de ne pas se mélanger les pinceaux avec ce qu'on te demande.
Au début, on vérifie que pour n = 1, ça fonctionne.
Initialisation : Pour n = 1, on a p1 = 1 d'après l'énoncé. Avec la formule dont on dispose, cela fournit : p1 = (1/5)^0 * 3/8 + 5/e8 = 8/8 = 1.
Mais ce n'est pas terminé, il y a un gros piège. La valeur fournie par l'énoncé p1 = 1, ça aurait pu être p1 = 13, ou 170, 91739179 etc et là ça ne fonctionnerait plus. Pour s'assurer de bien initialiser, on va aussi vérifier pour n = 2 :
p2 = 0,5 + 0,2*1 = 0,7 par définition de la suite.
Et par la formule : p2 = (1/5)^1 x 3/8 + 5/8 = (3/40) + (5/8) = (3/40) + (25/40) = 28/40 = 7/10 = 0,7.
Par la suite, on va vérifier l'hérédité de cette propriété, ou communément appelé "effet domino". On a prouvé que ça marchait pour n = 1 et n = 2, on va démontrer que ça fonctionne au rang n + 1. Pour ça, on va fixer un entier naturel n >= 1, et montrer que la propriété est vraie au rang n + 1. Cela prouvera que ça marchera au rang n = 2, puis 3, puis 4 etc jusqu'à l'infini (pour visualiser, imagine des dominos qui tombent successivement. Il faut juste faire tomber le 1er domino, et prouver que si le 2e tombe, alors le 3e tombera et ainsi de suite).
Soit n supérieur ou égal à 1 fixé, par hypothèse de récurrence, on sait qu'en théorie :
pn = (1/5)^(n-1) * (3/8) + (5/8). Pouvons alors que ça marche au rang n + 1, autrement dit, que :
p(n+1) = (1/5)^(n+1-1) * (3/8) + (5/8) = (1/5)^n * (3/8) + (5/8).
Par définition de la suite, on sait que p(n+1) = 0,5 + 0,2*pn donc p(n+1) = 0,5 + 0,2*[(1/5)^(n-1) * (3/8) + (5/8)] = (1/2) + (1/5) * [ (1/5)^(n-1) * (3/8) + (5/8)] = (1/2) + (1/5)^n * (3/8) + (5/40) = (1/5)^n * (3/8) + (25/40) = (1/5)^n * (3/8) + (5/8).
On retombe sur la même expression. La propriété étant initialisée et hereditaire, on conclut qu'elle est vraie pour tout entier naturel n supérieur ou égal à 1.
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.