Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

J'ai besoin d'aide avec mon exercice en mathématique s'il vous plait.

J'ai deux questions auxquels je suis perdu, de l'aide ne serait pas de refus.
Vous pourrez trouver mes réponses ci dessous.

3) a) Donnez les valeurs exactes des longueurs AB et BC.
Dans un repère orthonormé, on a placé quatre points : A(-4 ; 6), B(-2 ; 2), C(2 ; 4) et D(0 ; 8).
Soit ici utiliser la formule √((xB−xA)²+(yB−yA)²) pour donner les valeurs exactes de ces deux longeurs.
Soit pour AB :
AB = √(-2-(-4))²+(2-6)²
AB = √4²+(-4)²
AB = √16+16
AB = √32

BC = √(2-(-2))²+(4-2)²
BC = √4²+4²
BC = √16+16
BC = √32

CD = √(0-2)²+(8-4)²
CD = √4²+4²
CD = √16+16
CD = √32

b) Que peut-on en conclure pour le quadrilatère ABCD ?
On a bien AB²=BC²=CD² d’où le quadrilatère ABC est rectangle en B.

Mais lorsque l'on ma dit, À l’aide du théorème de Pythagore, montrez que ABC est rectangle en B, cela m'a perdu.

J'ai du me tromper quelque part,
de l'aide svp?

merci à vous tous.


Jai Besoin Daide Avec Mon Exercice En Mathématique Sil Vous Plait Jai Deux Questions Auxquels Je Suis Perdu De Laide Ne Serait Pas De Refus Vous Pourrez Trouver class=

Sagot :

Explications étape par étape

AB = √ [ - 2 - ( - 4 ) ]² + [ 2 - 6 ]²

AB = √ [ - 2 + 4 ]² + [ - 4 ]²

AB = √ [ - 2 ]² + 16

AB = √ 4 + 16

AB = √20

BC = √ [ 2 - ( - 2 ) ]² + ( 4 - 2 )²

BC = √ [ 2 + 2 ]² + 2²

BC = √ 4² + 4

BC = √ 16 + 4

BC = √20

Tu dois utiliser la réciproque de Pytahgore :

" Si le carré de l'hypothénuse est égal à la somme des carrés des deux autres côtés alors le triangle est rectangle."

AC = √ [ 2 - ( - 4 ) ]² + [ 4 - 6 ]²

AC = √ [ 2 + 4 ]² + [ - 2 ]²

AC = √ 6² + 4

AC = √ 36 + 4

AC = √40

AC² = √40² = 40

AB² + BC² = √20² + √20² = 20 + 20 = 40

Comme AC = AB + BC, alors la réciproque de Pythagore est vérifiée, donc le triangle ABC est rectangle en B.

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.